
All	Rules Advisory
Rules

Mandatory
Rules

Recommend
ed	Rules

Required
Rules

Understand
%	Coverage

96% 88% 60% 100% 93%

Understand
Coverage

2,680 150 15 1 831

Total	Rules 2,804 170 25 1 893

Checks

Check	ID Check	NameSupported Automation Category Severity
A0-1-1 A	project

shall	not
contain
instances	of
non-volatile
variables
being	given
values	that
are	not
subsequently
used

Yes Automated Required

A0-1-2 The	value
returned	by	a
function	shall
be	used

Yes Automated Required

A0-1-3 Every
function
defined	in	an
anonymous
namespace,
or	static
function	with
internal
linkage,	or
private
member
function	shall
be	used

Yes Automated Required

A0-1-4 There	shall Yes Automated Required

C
Checks

www.scitools.com Page	1/413

There	shall

be	no	unused
named
parameters	in
non-virtual
functions

A0-1-5 There	shall
be	no	unused
named
parameters	in
the	set	of
parameters
for	a	virtual
function	and
all	the
functions
that	override
it

Yes Automated Required

A0-1-6 There	should
be	no	unused
type
declarations

Yes Automated Advisory

A0-4-1 Floating-
point
implementati
on	shall
comply	with
IEEE	754
standard

No Non-
automated

Required

A0-4-2 Type	long
double	shall
not	be	used

Yes Automated Required

A1-1-2 A	warning
level	of	the
compilation
process	shall
be	set	in
compliance
with	project
policies

No Non-
automated

Required

A1-4-3 All	code
should
compile	free

Yes Automated Advisory

C
Checks

www.scitools.com Page	2/413

compile	free

of	compiler
warnings

A2-3-1 Only	those
characters
specified	in
the	C++
Language
Standard
basic	source
character	set
shall	be	used
in	the	source
code

Yes Automated Required

A2-5-1 2-3-1
Trigraphs
shall	not	be
used

Yes Automated Required

A2-5-2 Digraphs
shall	not	be
used

Yes Automated Required

A2-7-1 The
character	\
shall	not
occur	as	a
last	character
of	a	C++
comment

Yes Automated Required

A2-7-2 Sections	of
code	shall
not	be
"commented
out"

Yes Non-
automated

Required

A2-7-3 All
declarations
of	"user-
defined"
types,	static
and	non-
static	data
members,
functions	and
methods

Yes Automated Required

C
Checks

www.scitools.com Page	3/413

methods

shall	be
preceded	by
documentati
on

A2-8-1 A	header	file
name	should
reflect	the
logical	entity
for	which	it
provides
declarations

Yes Non-
automated

Required

A2-8-2 An
implementati
on	file	name
should	reflect
the	logical
entity	for
which	it
provides
definitions

Yes Non-
automated

Advisory

A2-10-1 Shadowed
Identifiers

Yes Automated Required

A2-10-4 The	identifier
name	of	a
non-member
object	with
static	storage
duration	or
static
function	shall
not	be
reused	within
a	namespace

Yes Automated Required

A2-10-5 An	identifier
name	of	a
function	with
static	storage
duration	or	a
non-member
object	with
external	or
internal

Yes Automated Advisory

C
Checks

www.scitools.com Page	4/413

internal

linkage
should	not	be
reused

A2-10-6 A	class	or
enumeration
name	shall
not	be
hidden	by	a
variable,
function	or
enumerator
declaration	in
the	same
scope

Yes Automated Required

A2-11-1 Volatile
keyword	shall
not	be	used

Yes Automated Required

A2-13-1 Only	those
escape
sequences
that	are
defined	in
ISO/IEC
14882<2014
shall	be	used

Yes Automated Required

A2-13-2 Concatenatin
g	String
Literals	of
Different
Encodings

Yes

A2-13-3 Type	wchar_t
shall	not	be
used

Yes Automated Required

A2-13-4 String	literals
shall	not	be
assigned	to
non-constant
pointers

Yes Automated Required

A2-13-5 Hexadecimal
constants
should	be
upper	case

Yes Automated Advisory

C
Checks

www.scitools.com Page	5/413

A2-13-6 Universal
character
names	shall
be	used	only
inside
character	or
string	literals

Yes Automated Required

A3-1-1 It	shall	be
possible	to
include	any
header	file	in
multiple
translation
units	without
violating	the
One
Definition
Rule

Yes Automated Required

A3-1-2 Header	files,
that	are
defined
locally	in	the
project,	shall
have	a	file
name
extension	of
one	of:	".h",
".hpp"	or
".hxx"

Yes Automated Required

A3-1-3 Implementati
on	files,	that
are	defined
locally	in	the
project,
should	have
a	file	name
extension	of
".cpp"

Yes Automated Advisory

A3-1-4 When	an
array	with
external
linkage	is

Yes Automated Required

C
Checks

www.scitools.com Page	6/413

linkage	is

declared,	its
size	shall	be
stated
explicitly

A3-1-5 A	function
definition
shall	only	be
placed	in	a
class
definition	if
(1)	the
function	is
intended	to
be	inlined	(2)
it	is	a
member
function
template	(3)
it	is	a
member
function	of	a
class
template

Yes Partially
Automated

Required

A3-1-6 Trivial
accessor	and
mutator
functions
should	be
inlined.

Yes Automated Advisory

A3-3-1 Objects	or
functions
with	external
linkage
(including
members	of
named
namespaces)
shall	be
declared	in	a
header	file

Yes Automated Required

A3-3-2 Static	and
thread-local

Yes Automated Required

C
Checks

www.scitools.com Page	7/413

thread-local

objects	shall
be	constant-
initialized

A3-9-1 Fixed	Width
Integers

Yes Automated Required

A4-5-1 Expressions
with	type
enum	or
enum	class
shall	not	be
used	as
operands	to
built-in	and
overloaded
operators
other	than
the	subscript
operator	[],
the
assignment
operator	=,
the	equality
operators	==
and	!	=,	the
unary	&
operator,	and
the	relational
operators	<,
<=,	>,	>=

Yes Automated Required

A4-7-1 An	integer
expression
shall	not	lead
to	data	loss.

Yes Automated Required

A4-10-1 Only	nullptr
literal	shall
be	used	as
the	null-
pointer-
constant

Yes Automated Required

A5-0-1 The	value	of
an
expression

Yes Automated Required

C
Checks

www.scitools.com Page	8/413

expression

shall	be	the
same	under
any	order	of
evaluation
that	the
standard
permits

A5-0-2 Condition	of
if	statement
shall	be	bool

Yes Automated Required

A5-0-3 No	more	than
2	levels	of
pointer
indirection

Yes Automated Required

A5-0-4 Pointer
arithmetic
shall	not	be
used	with
pointers	to
non-final
classes

Yes Automated Required

A5-1-1 Literal	values
shall	not	be
used	apart
from	type
initialization,
otherwise
symbolic
names	shall
be	used
instead

Yes Automated Required

A5-1-2 Variables
shall	not	be
implicitly
captured	in	a
lambda
expression

Yes Automated Required

A5-1-3 Parameter
list	(possibly
empty)	shall
be	included
in	every

Yes Automated Required

C
Checks

www.scitools.com Page	9/413

in	every

lambda
expression

A5-1-4 A	lambda
expression
object	shall
not	outlive
any	of	its
reference-
captured
objects

Yes Automated Required

A5-1-6 Specify
Lambda
Return	Type

Yes Automated Advisory

A5-1-7 A	lambda
shall	not	be
an	operand
to	decltype
or	typeid

Yes Automated Required

A5-1-8 Lambda
expressions
should	not	be
defined
inside
another
lambda
expression

Yes Automated Advisory

A5-1-9 Identical
unnamed
lambda
expressions
shall	be
replaced	with
a	named
function	or	a
named
lambda
expression

Yes Automated Advisory

A5-2-1 dynamic_cas
t	should	not
be	used

Yes Automated Advisory

A5-2-2 Traditional	C-
style	casts

Yes Automated Required

C
Checks

www.scitools.com Page	10/413

style	casts

shall	not	be
used

A5-2-3 A	cast	shall
not	remove
any	const	or
volatile
qualification
from	the	type
of	a	pointer
or	reference

Yes Automated Required

A5-2-4 reinterpret_c
ast	shall	not
be	used

Yes Automated Required

A5-2-5A An	array	or
container
shall	not	be
accessed
beyond	its
range	(Part
A)

Yes Automated Required

A5-2-5B An	array	or
container
shall	not	be
accessed
beyond	its
range	Part	B

Yes Automated Required

A5-2-6 Operands	of
Logical
Boolean
Operators

Yes Automated Required

A5-3-1 Evaluation	of
the	operand
to	the	typeid
operator	shall
not	contain
side	effects.

Yes Non-
automated

Required

A5-3-2 Before
dereferencin
g	a	pointer,
compare	it
with	NULL

Yes Partially
Automated

Required

A5-3-3 Deleting Yes Automated Required

C
Checks

www.scitools.com Page	11/413

Deleting

Pointers	to
Incomplete
Class	Types

A5-5-1 A	pointer	to
member	shall
not	access
non-existent
class
members

Yes Automated Required

A5-6-1A The	right
hand
operand	of
the	integer
division	or
remainder
operators
shall	not	be
equal	to	zero

Yes Automated Required

A5-6-1B The	right
hand
operand	of
the	integer
division	or
remainder
operators
shall	not	be
equal	to	zero

Yes Automated Required

A5-10-1 A	pointer	to
member
virtual
function	shall
only	be
tested	for
equality	with
null-pointer-
constant

Yes Automated Required

A5-16-1 The	ternary
conditional
operator	shall
not	be	used
as	a	sub-
expression

Yes Automated Required

C
Checks

www.scitools.com Page	12/413

A6-2-1 Move	and
copy
assignment
operators
shall	either
move	or
respectively
copy	base
classes	and
data
members	of
a	class,
without	any
side	effects

Yes Automated Required

A6-2-2 Explicit	Calls
to
Constructors
of	Temporary
Objects

Yes Automated Required

A6-4-1 A	switch
statement
shall	have	at
least	two
case-
clauses,
distinct	from
the	default
label

Yes Automated Required

A6-5-1 A	for-loop
that	loops
through	all
elements	of
the	container
and	does	not
use	its	loop-
counter	shall
not	be	used

Yes Automated Required

A6-5-2 A	for	loop
shall	contain
a	single	loop-
counter
which	shall

Yes Automated Required

C
Checks

www.scitools.com Page	13/413

which	shall

not	have
floating-point
type

A6-5-3 Do
statements
should	not	be
used

Yes Automated Advisory

A6-5-4 For-init-
statement
and
expression
should	not
perform
actions	other
than	loop-
counter
initialization
and
modification

Yes Automated Advisory

A6-6-1 The	goto
statement
shall	not	be
used.

Yes Automated Required

A7-1-1 Constexpr	or
const
specifiers
shall	be	used
for
immutable
data
declaration

Yes Automated Required

A7-1-2 The
constexpr
specifier
shall	be	used
for	values
that	can	be
determined
at	compile
time

Yes Automated Required

A7-1-3 CV-qualifiers
shall	be

Yes Automated Required

C
Checks

www.scitools.com Page	14/413

shall	be

placed	on	the
right	hand
side	of	the
type	that	is	a
typedef	or	a
using	name

A7-1-4 The	register
keyword	shall
not	be	used

Yes Automated Required

A7-1-5 The	auto
specifier
shall	not	be
used	apart
from
following
cases:	(1)	to
declare	that	a
variable	has
the	same
type	as
return	type	of
a	function
call,	(2)	to
declare	that	a
variable	has
the	same
type	as
initializer	of
non-
fundamental
type,	(3)	to
declare
parameters
of	a	generic
lambda
expression,
(4)	to	declare
a	function
template
using	trailing
return	type
syntax

Yes Automated Required

C
Checks

www.scitools.com Page	15/413

A7-1-6 The	typedef
specifier
shall	not	be
used

Yes Automated Required

A7-1-7 Each
expression
statement
and	identifier
declaration
shall	be
placed	on	a
separate	line

Yes Automated Required

A7-1-8 A	non-type
specifier
shall	be
placed	before
a	type
specifier	in	a
declaration.

Yes Automated Required

A7-1-9 A	class,
structure,	or
enumeration
shall	not	be
declared	in
the	definition
of	its	type

Yes Automated Required

A7-2-1 An
expression
with	enum
underlying
type	shall
only	have
values
correspondin
g	to	the
enumerators
of	the
enumeration

Yes Automated Required

A7-2-2 Enumeration
underlying
base	type
shall	be

Yes Automated Required

C
Checks

www.scitools.com Page	16/413

shall	be

explicitly
defined

A7-2-3 Enumerations
shall	be
declared	as
scoped	enum
classes

Yes Automated Required

A7-2-4 In	an
enumeration,
either	(1)
none,	(2)	the
first	or	(3)	all
enumerators
shall	be
initialized

Yes Automated Required

A7-3-1 Overloaded
Function	Not
Visible	From
Where	it	is
Called

Yes Automated Required

A7-4-1 The	asm
declaration
shall	not	be
used.

Yes Automated Required

A7-5-1 A	function
shall	not
return	a
reference	or
a	pointer	to	a
parameter
that	is
passed	by
reference	to
const.

Yes Automated Required

A7-5-2 Functions
shall	not	call
themselves,
either
directly	or
indirectly.

Yes Automated Required

A7-6-1 Functions
declared	with

Yes Automated Required

C
Checks

www.scitools.com Page	17/413

declared	with

the
[[noreturn]]
attribute	shall
not	return

A8-2-1 When
declaring
function
templates,
the	trailing
return	type
syntax	shall
be	used	if	the
return	type
depends	on
the	type	of
parameters.

Yes Automated Required

A8-4-1 Functions
shall	not	be
defined	using
the	ellipsis
notation.

Yes Automated Required

A8-4-2 Always	return
a	value	in
non-void
functions

Yes Automated Required

A8-4-3 Common
ways	of
passing
parameters
should	be
used.

Yes Automated Required

A8-4-4 Multiple
output	values
from	a
function
should	be
returned	as	a
struct	or
tuple.

Yes Automated Advisory

A8-4-5 "consume"
parameters
declared	as	X

Yes Automated Required

C
Checks

www.scitools.com Page	18/413

declared	as	X

&&	shall
always	be
moved	from.

A8-4-6 "forward"
parameters
declared	as	T
&&	shall
always	be
forwarded.

Yes Automated Required

A8-4-7 "in"
parameters
for	"cheap	to
copy"	types
shall	be
passed	by
value.

Yes Automated Required

A8-4-8 Output
parameters
shall	not	be
used.

Yes Automated Required

A8-4-9 "in-out"
parameters
declared	as	T
&	shall	be
modified.

Yes Automated Required

A8-4-10 A	parameter
shall	be
passed	by
reference	if	it
can't	be
NULL

Yes Automated Required

A8-4-11 A	smart
pointer	shall
only	be	used
as	a
parameter
type	if	it
expresses
lifetime
semantics

Yes Automated Required

A8-4-12 Invalid	Use	of
std::unique_p

Yes Automated Required

C
Checks

www.scitools.com Page	19/413

std::unique_p

tr
A8-4-13 Invalid	Use	of

std::shared_
ptr

Yes Automated Required

A8-5-0 Uninitialized
Memory
Read

Yes Automated Required

A8-5-1 Incorrect
Order	of
Initialization

Yes Automated Required

A8-5-2 Initializing
Variables
Without
Using
Braced-
Initialization

Yes Automated Required

A8-5-3 Auto	Variable Yes Automated Required
A8-5-4 Class

Constructor
with
Parameter
Type
std::initializer
_list

Yes Automated Advisory

A9-3-1 Member
functions
shall	not
return	non-
const	raw
pointers	or
references	to
private	or
protected
data	owned
by	the	class

Yes Automated Required

A9-5-1 Unions	Shall
not	be	Used

Yes Automated Required

A9-6-1 Data	types
used	for
interfacing

Yes Partially
Automated

Required

A10-0-1 Public
Inheritance

Yes Non-
automated

Required

C
Checks

www.scitools.com Page	20/413

Inheritance

not	Used	in	a
"is-a"
Relationship

A10-0-2 Membership
or	non-public
inheritance
shall	be	used
to	implement
"has-a"
relationship

No Non-
automated

Required

A10-1-1 Multiple	Base
Classes

Yes Automated Required

A10-2-1 Non-virtual
public	or
protected
member
functions
shall	not	be
redefined	in
derived
classes

Yes Automated Required

A10-3-1 Virtual
function
declaration
shall	contain
exactly	one
of	the	three
specifiers:	(1)
virtual,	(2)
override,	(3)
final

Yes Automated Required

A10-3-3 Virtual
functions
shall	not	be
introduced	in
a	final	class

Yes Automated Required

A10-3-5 User-defined
assignment
operator	shall
not	be	virtual

Yes Automated Required

A10-4-1 Hierarchies
should	be

Yes Non-
automated

Advisory

C
Checks

www.scitools.com Page	21/413

should	be

based	on
interface
classes

A11-0-1 A	non-POD
type	should
be	defined	as
class

Yes Automated Advisory

A11-0-2 A	type
defined	as
struct	shall:
(1)	provide
only	public
data
members,	(2)
not	provide
any	special
member
functions	or
methods,	(3)
not	be	a	base
of	another
struct	or
class,	(4)	not
inherit	from
another
struct	or
class

Yes Automated Required

A11-3-1 Friend
declarations
shall	not	be
used.

Yes Automated Required

A12-0-1 If	a	class
declares	a
copy	or	move
operation,	or
a	destructor,
either	via
"=default",
"=delete",	or
via	a	user-
provided
declaration,

Yes Automated Required

C
Checks

www.scitools.com Page	22/413

declaration,

then	all
others	of
these	five
special
member
functions
shall	be
declared	as
well.

A12-0-2 Bitwise
operations
and
operations
that	assume
data
representatio
n	in	memory
shall	not	be
performed	on
objects.

Yes Automated Required

A12-1-1 Constructors
shall
explicitly
initialize	all
virtual	base
classes,	all
direct	non-
virtual	base
classes	and
all	non-static
data
members.

Yes Automated Required

A12-1-2 Both	NSDMI
and	a	non-
static
member
initializer	in	a
constructor
shall	not	be
used	in	the
same	type.

Yes Automated Required

A12-1-3 If	all	user- Yes Automated Required

C
Checks

www.scitools.com Page	23/413

If	all	user-

defined
constructors
of	a	class
initialize	data
members
with	constant
values	that
are	the	same
across	all
constructors,
then	data
members
shall	be
initialized
using	NSDMI
instead.

A12-1-4 All
constructors
that	are
callable	with
a	single
argument	of
fundamental
type	shall	be
declared
explicit.

Yes Automated Required

A12-1-5 Common
class
initialization
for	non-
constant
members
shall	be	done
by	a
delegating
constructor.

Yes Partially
Automated

Required

A12-1-6 Derived
classes	that
do	not	need
further
explicit
initialization

No Automated Required

C
Checks

www.scitools.com Page	24/413

initialization

and	require
all	the
constructors
from	the
base	class
shall	use
inheriting
constructors

A12-4-1 Destructor	of
a	base	class
shall	be
public	virtual,
public
override	or
protected
non-virtual

Yes Automated Required

A12-4-2 If	a	public
destructor	of
a	class	is
non-virtual,
then	the
class	should
be	declared
final.

Yes Automated Advisory

A12-6-1 All	class	data
members
that	are
initialized	by
the
constructor
shall	be
initialized
using
member
initializers.

Yes Automated Required

A12-7-1 If	the
behavior	of	a
user-defined
special
member
function	is
identical	to

Yes Automated Required

C
Checks

www.scitools.com Page	25/413

identical	to

implicitly
defined
special
member
function,
then	it	shall
be	defined
=default	or
be	left
undefined.

A12-8-1 Move	and
copy
constructors
shall	move
and
respectively
copy	base
classes	and
data
members	of
a	class,
without	any
side	effects

Yes Automated Required

A12-8-2 User-defined
copy	and
move
assignment
operators
should	use
user-defined
no-throw
swap
function.

Yes Automated Advisory

A12-8-3 Moved-from
object	shall
not	be	read-
accessed.

Yes Partially
Automated

Advisory

A12-8-4 Move
constructor
shall	not
initialize	its
class

Yes Automated Required

C
Checks

www.scitools.com Page	26/413

class

members	and
base	classes
using	copy
semantics.

A12-8-5 A	copy
assignment
and	a	move
assignment
operators
shall	handle
self-
assignment.

Yes Automated Required

A12-8-6 Copy	and
move
constructors
and	copy
assignment
and	move
assignment
operators
shall	be
declared
protected	or
defined
"=delete"	in
base	class.

Yes Automated Required

A12-8-7 Assignment
operators
should	be
declared	with
the	ref-
qualifier	&.

Yes Automated Advisory

A13-1-2 User	defined
suffixes	of
the	user
defined	literal
operators
shall	start
with
underscore
followed	by
one	or	more

Yes Automated Required

C
Checks

www.scitools.com Page	27/413

one	or	more

letters
A13-1-3 User	defined

literals
operators
shall	only
perform
conversion	of
passed
parameters

Yes Automated Required

A13-2-1 An
assignment
operator	shall
return	a
reference	to
"this"

Yes Automated Required

A13-2-2 A	binary
arithmetic
operator	and
a	bitwise
operator	shall
return	a
"prvalue"

Yes Automated Required

A13-2-3 A	relational
operator	shall
return	a
boolean
value

Yes Automated Required

A13-3-1 A	function
that	contains
"forwarding
reference"	as
its	argument
shall	not	be
overloaded

Yes Automated Required

A13-5-1 If
"operator[]"
is	to	be
overloaded
with	a	non-
const
version,
const	version

Yes Automated Required

C
Checks

www.scitools.com Page	28/413

const	version

shall	also	be
implemented

A13-5-2 All	user-
defined
conversion
operators
shall	be
defined
explicit

Yes Automated Required

A13-5-3 User-defined
conversion
operators
should	not	be
used

Yes Automated Advisory

A13-5-4 If	two
opposite
operators	are
defined,	one
shall	be
defined	in
terms	of	the
other

Yes Automated Required

A13-5-5 Comparison
operators
shall	be	non-
member
functions
with	identical
parameter
types	and
noexcept

Yes Automated Required

A13-6-1 Digit
sequences
separators	'
shall	only	be
used	as
follows:	(1)
for	decimal,
every	3
digits,	(2)	for
hexadecimal,
every	2

Yes Automated Required

C
Checks

www.scitools.com Page	29/413

every	2

digits,	(3)	for
binary,	every
4	digits

A14-1-1 A	template
should	check
if	a	specific
template
argument	is
suitable	for
this	template

Yes Non-
automated

Advisory

A14-5-1 A	template
constructor
shall	not
participate	in
overload
resolution	for
a	single
argument	of
the	enclosing
class	type

Yes Automated Required

A14-5-2 Class
members
that	are	not
dependent
on	template
class
parameters
should	be
defined	in	a
separate
base	class

Yes Partially
Automated

Advisory

A14-5-3 A	non-
member
generic
operator	shall
only	be
declared	in	a
namespace
that	does	not
contain	class
(struct)	type,
enum	type	or

Yes Automated Advisory

C
Checks

www.scitools.com Page	30/413

enum	type	or

union	type
declarations

A14-7-1 A	type	used
as	a	template
argument
shall	provide
all	members
that	are	used
by	the
template

Yes Automated Required

A14-7-2 Template
specialization
shall	be
declared	in
the	same	file
as	the
primary
template

Yes Automated Required

A14-8-2 Explicit
specialization
s	of	function
templates
shall	not	be
used

Yes Automated Required

A15-0-1 A	function
shall	not	exit
with	an
exception	if	it
is	able	to
complete	its
task

No Non-
automated

Required

A15-0-2 At	least	the
basic
guarantee	for
exception
safety	shall
be	provided
for	all
operations.	In
addition,
each	function
may	offer

No Partially
Automated

Required

C
Checks

www.scitools.com Page	31/413

may	offer

either	the
strong
guarantee	or
the	nothrow
guarantee

A15-0-3 Exception
safety
guarantee	of
a	called
function	shall
be
considered

No Non-
automated

Required

A15-0-4 Unchecked
exceptions
shall	be	used
to	represent
errors	from
which	the
caller	cannot
reasonably
be	expected
to	recover.

No Non-
automated

Required

A15-0-5 Checked
exceptions
shall	be	used
to	represent
errors	from
which	the
caller	can
reasonably
be	expected
to	recover

No Non-
automated

Required

A15-0-6 An	analysis
shall	be
performed	to
analyze	the
failure	modes
of	exception
handling

No Non-
automated

Required

A15-0-7 Exception
handling
mechanism

No Partially
Automated

Required

C
Checks

www.scitools.com Page	32/413

mechanism

shall
guarantee	a
deterministic
worst-case
time
execution
time

A15-0-8 A	worst-case
execution
time	(WCET)
analysis	shall
be	performed
to	determine
maximum
execution
time
constraints
of	the
software,
covering	in
particular	the
exceptions
processing

No Non-
automated

Required

A15-1-1 Only
instances	of
types	derived
from
std::exceptio
n	should	be
thrown

Yes Automated Advisory

A15-1-2 An	exception
object	shall
not	be	a
pointer

Yes Automated Required

A15-1-3 All	thrown
exceptions
should	be
unique

Yes Automated Advisory

A15-1-4 If	a	function
exits	with	an
exception,
then	before	a

Yes Partially
Automated

Required

C
Checks

www.scitools.com Page	33/413

then	before	a

throw,	the
function	shall
place	all
objects/
resources
that	the
function
constructed
in	valid	states
or	it	shall
delete	them

A15-2-1 Constructors
that	are	not
noexcept
shall	not	be
invoked
before
program
startup

Yes Automated Required

A15-2-2 If	a
constructor
is	not
noexcept	and
the
constructor
cannot	finish
object
initialization,
then	it	shall
deallocate
the	object's
resources
and	it	shall
throw	an
exception

Yes Partially
Automated

Required

A15-3-3 Unhandled
Exceptions
on	Main
Function

Yes Partially
Automated

Required

A15-3-4 Catch-all
(ellipsis	and
std::exceptio

Yes Non-
automated

Required

C
Checks

www.scitools.com Page	34/413

std::exceptio

n)	handlers
shall	be	used
only	in	(a)
main,	(b)	task
main
functions,	(c)
in	functions
that	are
supposed	to
isolate
independent
components
and	(d)	when
calling	third-
party	code
that	uses
exceptions
not
according	to
AUTOSAR	C+
+14
guidelines	

A15-3-5 A	class	type
exception
shall	be
caught	by
reference	or
const
reference

Yes Automated Required

A15-4-1 Dynamic
exception-
specification
shall	not	be
used	

Yes Automated Required

A15-4-2 If	a	function
is	declared	to
be	noexcept,
noexcept(tru
e)	or
noexcept(<tr
uecondition>
),	then	it	shall

Yes Automated Required

C
Checks

www.scitools.com Page	35/413

),	then	it	shall

not	exit	with
an	exception

A15-4-3 The	noexcept
specification
of	a	function
shall	either
be	identical
across	all
translation
units,	or
identical	or
more
restrictive
between	a
virtual
member
function	and
an	overrider

Yes Automated Required

A15-4-4 A	declaration
of	non-
throwing
function	shall
contain
noexcept
specification

Yes Automated Required

A15-4-5 Checked
exceptions
that	could	be
thrown	from
a	function
shall	be
specified
together	with
the	function
declaration
and	they
shall	be
identical	in	all
function
declarations
and	for	all	its
overriders.

Yes Automated Required

C
Checks

www.scitools.com Page	36/413

A15-5-1 All	user-
provided
class
destructors,
deallocation
functions,
move
constructors,
move
assignment
operators
and	swap
functions
shall	not	exit
with	an
exception.	A
noexcept
exception
specification
shall	be
added	to
these
functions	as
appropriate

Yes Automated Required

A15-5-2 Program	shall
not	be
abruptly
terminated

Yes Automated Required

A15-5-3 The
std::terminat
e()	function
shall	not	be
called
implicitly

Yes Automated Required

A16-0-1 Incorrect	Use
of	Pre-
processor

Yes Automated Required

A16-2-1 Header	File
Name

Yes Automated Required

A16-2-2 There	shall
be	no	unused
include

Yes Automated Required

C
Checks

www.scitools.com Page	37/413

include

directives
(slow)

A16-6-1 #error
directive
shall	not	be
used

Yes Automated Required

A16-7-1 The	#pragma
directive
shall	not	be
used

Yes Automated Required

A17-0-1 Reserved
Builtin
Macros

Yes Automated Required

A17-6-1 Non-
standard
entities	shall
not	be	added
to	standard
namespaces

Yes Automated Required

A18-0-1 The	C	library
facilities	shall
only	be
accessed
through	C++
library
headers

Yes Automated Required

A18-0-2 The	error
state	of	a
conversion
from	string	to
a	numeric
value	shall	be
checked

Yes Automated Required

A18-0-3 Library
<clocale>
(locale.h)

Yes Automated Required

A18-1-1 C-style	Array Yes Automated Required
A18-1-2 The

std::vector<b
ool>
specialization
shall	not	be

Yes Automated Required

C
Checks

www.scitools.com Page	38/413

shall	not	be

used
A18-1-3 The

std::auto_ptr
type	shall	not
be	used

Yes Automated Required

A18-1-4 A	pointer
pointing	to	an
element	of	an
array	of
objects	shall
not	be
passed	to	a
smart	pointer
of	single
object	type

Yes Automated Required

A18-1-6 All	std::hash
specialization
s	for	user-
defined	types
shall	have	a
noexcept
function	call
operator

Yes Automated Required

A18-5-1 Functions
malloc,
calloc,	realloc
and	free	shall
not	be	used

Yes Automated Required

A18-5-2 Non-
placement
new	or	delete
expressions
shall	not	be
used

Yes Partially
Automated

Required

A18-5-3 The	form	of
the	delete
expression
shall	match
the	form	of
the	new
expression
used	to

Yes Automated Required

C
Checks

www.scitools.com Page	39/413

used	to

allocate	the
memory

A18-5-4 If	a	project
has	a	sized
or	unsized
version	of
operator
"delete"
globally
defined,	then
both	sized
and	unsized
versions	shall
be	defined

Yes Automated Required

A18-5-7 Dynamic
Memory
Usage	on
Realtime
Phase

Yes Non-
automated

Required

A18-5-8 Objects	that
do	not	outlive
a	function
shall	have
automatic
storage
duration

Yes Partially
Automated

Required

A18-5-9 New	Method
Throwing	an
Exception

Yes Automated Required

A18-5-11 operator
"new"	and
operator
"delete"	shall
be	defined
together

Yes Automated Required

A18-9-1 The	std::bind
shall	not	be
used

Yes Automated Required

A18-9-2 Forwarding
values	to
other
functions

Yes Automated Required

C
Checks

www.scitools.com Page	40/413

functions

shall	be	done
via:	(1)
std::move	if
the	value	is
an	rvalue
reference,	(2)
std::forward
if	the	value	is
forwarding
reference

A18-9-3 The
std::move
shall	not	be
used	on
objects
declared
const	or
const&

Yes Automated Required

A18-9-4 An	argument
to
std::forward
shall	not	be
subsequently
used

Yes Automated Required

A20-8-1 An	already-
owned
pointer	value
shall	not	be
stored	in	an
unrelated
smart	pointer

Yes Automated Required

A20-8-2 A
std::unique_p
tr	shall	be
used	to
represent
exclusive
ownership

Yes Automated Required

A20-8-3 A
std::shared_
ptr	shall	be
used	to

Yes Automated Required

C
Checks

www.scitools.com Page	41/413

used	to

represent
shared
ownership

A20-8-4 A
std::unique_p
tr	shall	be
used	over
std::shared_
ptr	if
ownership
sharing	is	not
required

Yes Automated Required

A20-8-5 std::make_un
ique	shall	be
used	to
construct
objects
owned	by
std::unique_p
tr

Yes Automated Required

A20-8-6 std::make_sh
ared	shall	be
used	to
construct
objects
owned	by
std::shared_
ptr

Yes Automated Required

A20-8-7 Cyclic
Structure	of
std::shared_
ptr

Yes Non-
automated

Required

A21-8-1 Arguments	to
character-
handling
functions
shall	be
representabl
e	as	an
unsigned
char

Yes Automated Required

A23-0-1 An	iterator Yes Automated Required

C
Checks

www.scitools.com Page	42/413

An	iterator

shall	not	be
implicitly
converted	to
const_iterato
r

A25-1-1 Predicate
Function
Objects
Copied
Incorrectly

Yes Automated Required

A26-5-1 Pseudorando
m	numbers
shall	not	be
generated
using
std::rand()

Yes Automated Required

A26-5-2 Random
number
engines	shall
not	be
default-
initialized

Yes Automated Required

A27-0-1 Inputs	from
independent
components
shall	be
validated

Yes Non-
automated

Required

A27-0-3 Alternate
input	and
output
operations	on
a	file	stream
shall	not	be
used	without
an
intervening
flush	or
positioning
call

Yes Automated Required

A27-0-4 C-style
strings	shall
not	be	used

Yes Automated Required

C
Checks

www.scitools.com Page	43/413

AC_00 No	Control
Code
Characters

Yes

AC_01 No	Direct	or
Indirect
Recursion

Yes

AC_HIS_02 Number	of
Paths(PATH)

Yes

AC_HIS_04 Cyclomatic
Complexity
(v(G))

Yes

AC_HIS_05 Calling
Functions
(CALLING)

Yes

AC_HIS_06 Called
Functions
(CALLS)

Yes

AC_HIS_07 Function
Parameters
(PARAM)

Yes

AC_HIS_08 Number	of
Staments
(STMT)

Yes

AC_HIS_09 Number	of
call	levels
(LEVEL)

Yes

AC_HIS_10 Number	of
return	points
(RETURN)

Yes

AC_HIS_11 Language
scope
(VOCF)

Yes

AC_HIS_12 Recursion
(AP_CG_CYC
LE)

Yes

AC_HIS_13 Statements
Changed
(SCHG)

Yes

AC_HIS_14 Statements
Deleted
(SDEL)

Yes

C
Checks

www.scitools.com Page	44/413

AC_HIS_15 New
Statements
(SNEW)

Yes

AC_HIS_16 Stability
Index	(S)

Yes

ARR30-C Do	not	form
or	use	out-
of-bounds
pointers	or
array
subscripts

No High

ARR32-C Ensure	size
arguments
for	variable
length	arrays
are	in	a	valid
range

No High

ARR36-C Do	not
subtract	or
compare	two
pointers	that
do	not	refer
to	the	same
array

Yes Medium

ARR37-C Do	not	add	or
subtract	an
integer	to	a
pointer	to	a
non-array
object

Yes Medium

ARR38-C Guarantee
that	library
functions	do
not	form
invalid
pointers

No High

ARR39-C Do	not	add	or
subtract	a
scaled
integer	to	a
pointer

Yes High

CON30-C Clean	up Yes Medium

C
Checks

www.scitools.com Page	45/413

Clean	up

thread-
specific
storage

CON31-C Do	not
destroy	a
mutex	while
it	is	locked

Yes Medium

CON32-C Prevent	data
races	when
accessing
bit-fields
from	multiple
threads

No Medium

CON33-C Avoid	race
conditions
when	using
library
functions

Yes Medium

CON34-C Declare
objects
shared
between
threads	with
appropriate
storage
durations

No Medium

CON35-C Avoid
deadlock	by
locking	in	a
predefined
order

No Low

CON36-C Wrap
functions
that	can
spuriously
wake	up	in	a
loop

Yes Low

CON37-C Do	not	call
signal()	in	a
multithreade
d	program

Yes Low

CON38-C Preserve Yes Low

C
Checks

www.scitools.com Page	46/413

Preserve

thread	safety
and	liveness
when	using
condition
variables

CON39-C Do	not	join	or
detach	a
thread	that
was
previously
joined	or
detached

Yes Low

CON40-C Do	not	refer
to	an	atomic
variable
twice	in	an
expression

Yes Medium

CON41-C Wrap
functions
that	can	fail
spuriously	in
a	loop

Yes Low

CON43-C Do	not	allow
data	races	in
multithreade
d	code

No Medium

CON50-CPP Do	not
destroy	a
mutex	while
it	is	locked

Yes Medium

CON51-CPP Ensure
actively	held
locks	are
released	on
exceptional
conditions

Yes Low

CON52-CPP Prevent	data
races	when
accessing
bit-fields
from	multiple
threads

Yes Medium

C
Checks

www.scitools.com Page	47/413

CON53-CPP Avoid
deadlock	by
locking	in	a
predefined
order

No Low

CON54-CPP Wrap
functions
that	can
spuriously
wake	up	in	a
loop

Yes Medium

CON55-CPP Preserve
thread	safety
and	liveness
when	using
condition
variables

Yes Low

CON56-CPP Do	not
speculatively
lock	a	non-
recursive
mutex	that	is
already
owned	by	the
calling	thread

Yes Low

CPP_A000 Assembler
instructions
only	use	asm
keyword

Yes

CPP_A001 Assembly
language
shall	be
encapsulated
and	isolated.

Yes

CPP_A004 Parameter	of
assignment
operator	is	a
constant
reference

Yes

CPP_A005 Move	and
copy
assignment

Yes

C
Checks

www.scitools.com Page	48/413

assignment

operators
shall	either
move	or
respectively
copy	base
classes	and
data
members	of
a	class,
without	any
side	effects

CPP_A006 The	asm
declaration
shall	not	be
used.

Yes

CPP_A007 Assembler
instructions
shall	only	be
introduced
using	the
asm
declaration.

Yes

CPP_A008 Assembly
Language
Code	Usage
not
Documented

Yes

CPP_A009 User-defined
copy	and
move
assignment
operators
should	use
user-defined
no-throw
swap
function.

Yes

CPP_A010 Move
constructor
shall	not
initialize	its
class

Yes

C
Checks

www.scitools.com Page	49/413

class

members	and
base	classes
using	copy
semantics.

CPP_A011 A	copy
assignment
and	a	move
assignment
operators
shall	handle
self-
assignment.

Yes

CPP_A012 Copy	and
move
constructors
and	copy
assignment
and	move
assignment
operators
shall	be
declared
protected	or
defined
"=delete"	in
base	class.

Yes

CPP_A013 Assignment
operators
should	be
declared	with
the	ref-
qualifier	&.

Yes

CPP_A014 The	semantic
equivalence
between	a
binary
operator	and
its
assignment
operator	form
shall	be
preserved

Yes

C
Checks

www.scitools.com Page	50/413

CPP_A015 An
assignment
operator	shall
return	a
reference	to
"this"

Yes

CPP_A016 In	a	class
template	with
a	dependent
base,	any
name	that
may	be	found
in	that
dependent
base	shall	be
referred	to
using	a
qualified-id
or	this->

Yes

CPP_A017 A	template
should	check
if	a	specific
template
argument	is
suitable	for
this	template

Yes

CPP_AO000 Assignment
operators
shall	not	be
used	in	sub-
expressions

Yes

CPP_B000 Bool,
Unsigned,	or
Signed	Bit-
fields

Yes

CPP_B001 (Fuzzy
parser)	Bit-
fields	shall
only	be
declared	with
an
appropriate

Yes

C
Checks

www.scitools.com Page	51/413

appropriate

type
CPP_B002 Enum	Bit-

fields
Yes

CPP_B003 The
underlying
bit
representatio
ns	of
floating-point
values	shall
not	be	used

Yes

CPP_B004 (Fuzzy
parser)
Named	bit-
fields	with
signed
integer	type
shall	have	a
length	of
more	than
one	bit.

Yes

CPP_B005 (Fuzzy
parser)
Single-bit
named	bit
fields	shall
not	be	of	a
signed	type

Yes

CPP_B006 Bit-field
Length

Yes

CPP_C000 Commented
Out	Code

Yes

CPP_C001 Line-splicing
shall	not	be
used	in	//
comments

Yes

CPP_C002 No	Nested
Comments

Yes

CPP_C003 Only	use	/*
comments

Yes

CPP_C004 Parameter	of
copy

Yes

C
Checks

www.scitools.com Page	52/413

copy

constructor
is	a	constant
reference

CPP_C005 Members	in
function-try-
blocks	in
constructors
or
destructors

Yes

CPP_C006 Explicitly	call
all	immediate
and	virtual
base	classes

Yes

CPP_C007 A	copy
constructor
shall	be
declared
when	there	is
a	template
constructor
with	a	single
parameter
that	is	a
generic
parameter

Yes

CPP_C008 A	copy
constructor
shall	only
initialize	its
base	classes
and	the	non-
static
members	of
the	class	of
which	it	is	a
member

Yes

CPP_C009 Explicit
Constructors

Yes

CPP_C010 Incomplete
constructor
initialization
list

Yes

C
Checks

www.scitools.com Page	53/413

CPP_C011 An	object's
dynamic	type
shall	not	be
used	from
the	body	of
its
constructor
or	destructor

Yes

CPP_C012 Virtual
Function	Call
In
Constructor

Yes

CPP_C013 The
statement
forming	the
body	of	a
switch,	while,
do	...	while	or
for	statement
shall	be	a
compound
statement

Yes

CPP_C014 Dangling	ElseYes
CPP_C015 A	for	loop

shall	contain
a	single	loop-
counter
which	shall
not	have
floating-point
type

Yes

CPP_C016 An	if	(
condition)
construct
shall	be
followed	by	a
compound
statement.
The	else
keyword	shall
be	followed
by	either	a

Yes

C
Checks

www.scitools.com Page	54/413

by	either	a

compound
statement,	or
another	if
statement

CPP_C017 The	body	of
an	iteration-
statement	or
a	selection-
statement
shall	be	a
compound-
statement	

Yes

CPP_C018 Any	label
referenced
by	a	goto
statement
shall	be
declared	in
the	same
block,	or	in	a
block
enclosing	the
goto
statement

Yes

CPP_C019 A	loop-
control-
variable
other	than
the	loop-
counter	shall
not	be
modified
within
condition	or
expression

Yes

CPP_C020 If	loop-
counter	is
not	modified
by	--	or	++,
then,	within
condition,	the
loop-counter

Yes

C
Checks

www.scitools.com Page	55/413

loop-counter

shall	only	be
used	as	an
operand	to
<=,	<,	>	or	>=

CPP_C021 The	loop-
counter	shall
be	modified
by	one	of:	--,
++,	-=	n,	or
+=	n;	where	n
remains
constant	for
the	duration
of	the	loop

Yes

CPP_C022 The	loop-
counter	shall
not	be
modified
within
condition	or
statement

Yes

CPP_C023 The	goto
statement
shall	jump	to
a	label
declared
later	in	the
same
function
body

Yes

CPP_C024 No	Continue
Statements

Yes

CPP_C025 Goto
Statements

Yes

CPP_C026 There	should
be	no	more
than	one
break	or	goto
statement
used	to
terminate	any
iteration

Yes

C
Checks

www.scitools.com Page	56/413

iteration

statement
CPP_C027 Member	data

in	non-POD
class	types
shall	be
private

Yes

CPP_C028 A	null
statement
shall	only
occur	on	a
line	by	itself

Yes

CPP_C029 Single	exit
point	at	end

Yes

CPP_C030 A	switch-
label	shall
only	be	used
when	the
most	closely-
enclosing
compound
statement	is
the	body	of	a
switch
statement

Yes

CPP_C031 Switch	Has
Default

Yes

CPP_C032 Every	switch
statement
shall	have	at
least	two
switch-
clauses

Yes

CPP_C033 An
unconditional
throw	or
break
statement
shall
terminate
every	non-
empty
switch-

Yes

C
Checks

www.scitools.com Page	57/413

switch-

clause
CPP_C034 Unreachable

Code
Yes

CPP_C035 No	Backslash
at	End	of
Comment

Yes

CPP_C036 If	statements
shall	not
have
assignments
in	the
conditions

Yes

CPP_C037 Documentati
on

Yes

CPP_C038 Before
preprocessin
g,	a	null
statement
shall	only
occur	on	a
line	by	itself;
it	may	be
followed	by	a
comment,
provided	that
the	first
character
following	the
null
statement	is
a	white-
space
character

Yes

CPP_C039 A	switch
statement
shall	have	at
least	two
case-
clauses,
distinct	from
the	default
label

Yes

C
Checks

www.scitools.com Page	58/413

CPP_C040 A	loop-
control-
variable
other	than
the	loop-
counter
which	is
modified	in
statement
shall	have
type	bool

Yes

CPP_C041 Do
statements
should	not	be
used

Yes

CPP_C042 For-init-
statement
and
expression
should	not
perform
actions	other
than	loop-
counter
initialization
and
modification

Yes

CPP_C043 Checked
exceptions
that	could	be
thrown	from
a	function
shall	be
specified
together	with
the	function
declaration
and	they
shall	be
identical	in	all
function
declarations

Yes

C
Checks

www.scitools.com Page	59/413

declarations

and	for	all	its
overriders.

CPP_C044 Continue
Statement
Used	in	a	not
Well-formed
For	Loop

Yes

CPP_C046 Switch
Statement
not	Well-
formed

Yes

CPP_C047 All	if	and	else
if	constructs
shall	be
terminated
with	an	else
clause

Yes

CPP_C049 Class
Constructor
with
Parameter
Type
std::initializer
_list

Yes

CPP_C050 A	for-loop
that	loops
through	all
elements	of
the	container
and	does	not
use	its	loop-
counter	shall
not	be	used

Yes

CPP_C051 Constructors
that	are	not
noexcept
shall	not	be
invoked
before
program
startup

Yes

CPP_C052 If	a Yes

C
Checks

www.scitools.com Page	60/413

If	a

constructor
is	not
noexcept	and
the
constructor
cannot	finish
object
initialization,
then	it	shall
deallocate
the	object's
resources
and	it	shall
throw	an
exception

CPP_C053 Explicit	Calls
to
Constructors
of	Temporary
Objects

Yes

CPP_C054 When	a
"deep	copy"
constructor
is	not
implemented,
comments	in
the	class
header	shall
describe	this
fact

Yes

CPP_C055 Constructors
that	can	be
used	with
one
argument
should	be
declared
explicit.

Yes

CPP_C056 Move	and
copy
constructors
shall	move

Yes

C
Checks

www.scitools.com Page	61/413

shall	move

and
respectively
copy	base
classes	and
data
members	of
a	class,
without	any
side	effects

CPP_CF000 The	condition
of	a	switch
statement
shall	not
have	bool
type

Yes

CPP_CF001 All	cases	in	a
switch
statement
shall	have	a
break	or	it
shall	be	well
commented

Yes

CPP_CF002 Switch
statements
should	have
a	default
case

Yes

CPP_CF003 Switch	label
unstructured

Yes

CPP_CF004 The
std::terminat
e()	function
shall	not	be
called
implicitly

Yes

CPP_CF005 Program	shall
not	be
abruptly
terminated

Yes

CPP_CF006 Simple
Control	Flow

Yes

CPP_CF007 Loops	with Yes

C
Checks

www.scitools.com Page	62/413

Loops	with

Fixed	Limits
CPP_CM000 Comments

shall	precede
code	being
commented
and	shall
align	with
code	they
represent

Yes

CPP_CM001 Each	function
shall	end	with
a	comment

Yes

CPP_CM002 Timing
delays	shall
be	preceded
by	comments
explaining
the	delay

Yes

CPP_CM003 Class
headers	shall
include	a
short
description
for	every
member
function
declaration
and	a
comment	for
every	data
member
declared

Yes

CPP_CT_BUG
PRONE_ASS
ERT_SIDE_EF
FECT

Assert	Side
Effect

Yes High

CPP_CT_BUG
PRONE_BRA
NCH_CLONE

Branch	Clone Yes High

CPP_CT_BUG
PRONE_COP
Y_CONSTRU

Copy
Constructor
Init

Yes High

C
Checks

www.scitools.com Page	63/413

Y_CONSTRU

CTOR_INIT
CPP_CT_BUG
PRONE_INFI
NITE_LOOP

Infinte	Loop Yes High

CPP_CT_BUG
PRONE_MAC
RO_REPEATE
D_SIDE_EFFE
CTS

Macro	Side
Effects

Yes High

CPP_CT_BUG
PRONE_NOT
_NULL_TER
MINATED_RE
SULT

Missing	Null
Terminator

Yes High

CPP_CT_BUG
PRONE_RED
UNDANT_BR
ANCH_COND
ITION

Redundant
Condition

Yes High

CPP_CT_MO
DERNIZE_US
E_DEFAULT_
MEMBER_INI
T

Default
Member	Init

Yes

CPP_CT_MO
DERNIZE_US
E_EQUALS_
DEFAULT

Default
Member
Function

Yes

CPP_CT_MO
DERNIZE_US
E_EQUALS_
DELETE

Delete
Member
Function

Yes

CPP_CT_MO
DERNIZE_US
E_NULLPTR

Null	Pointer
Keyword

Yes

CPP_CT_REA
DABILITY_DE
LETE_NULL_
POINTER

Delete	Null
Pointer

Yes High

CPP_CT_REA
DABILITY_RE
DUNDANT_C

Redundant
Cast

Yes High

C
Checks

www.scitools.com Page	64/413

DUNDANT_C

ASTING
CPP_D000 An

accessible
base	class
shall	not	be
both	virtual
and	non-
virtual	in	the
same
hierarchy

Yes

CPP_D002 Single
Declarations

Yes

CPP_D003 When	an
array	is
declared	with
external
linkage,	its
size	shall	be
stated
explicitly	or
defined
implicitly	by
initialisation

Yes

CPP_D004 A	u	or	U
suffix	shall
be	applied	to
all	integer
constants
that	are
represented
in	an
unsigned
type

Yes

CPP_D005 A	base	class
shall	only	be
declared
virtual	if	it	is
used	in	a
diamond
hierarchy

Yes

CPP_D006 Class
Derived	From

Yes

C
Checks

www.scitools.com Page	65/413

Derived	From

Virtual	Bases
CPP_D007 A	compatible

declaration
shall	be
visible	when
an	object	or
function	with
external
linkage	is
defined

Yes

CPP_D008 A	copy
assignment
operator	shall
be	declared
when	there	is
a	template
assignment
operator	with
a	parameter
that	is	a
generic
parameter

Yes

CPP_D009 Multiple
declarations
for	an
identifier	in
the	same
namespace
shall	not
straddle	a
using-
declaration
for	that
identifier

Yes

CPP_D010 =	construct
in
enumerator
list	shall	only
be	used	on
either	the
first	item
alone,	or	all

Yes

C
Checks

www.scitools.com Page	66/413

alone,	or	all

items
explicitly.

CPP_D011 Use	the
static
keyword	for
internal
linkage

Yes

CPP_D012 An	external
object	or
function	shall
be	declared
in	one	and
only	one	file

Yes

CPP_D013 An	identifier
with	external
linkage	shall
have	exactly
one	definition

Yes

CPP_D015 Externals
shall	have
the	same
type	in	the
declaration
and	definition

Yes

CPP_D017 Non-static
Inline
Functions

Yes

CPP_D018 Literal
suffixes	shall
be	upper
case

Yes

CPP_D019 The	comma
operator,	&&
operator	and
the	||
operator	shall
not	be
overloaded

Yes

CPP_D020 The
lowercase
character	L
shall	not	be

Yes

C
Checks

www.scitools.com Page	67/413

shall	not	be

used	in	a
literal	suffix

CPP_D021 Narrow	and
wide	string
literals	shall
not	be
concatenated

Yes

CPP_D022 Functions
and	objects
should	not	be
defined	with
external
linkage	if
they	are
referenced	in
only	one
translation
unit

Yes

CPP_D023 Single-
Function
Global
Objects

Yes

CPP_D024 The	restrict
type	qualifier
shall	not	be
used

Yes

CPP_D026 The	register
keyword	shall
not	be	used

Yes

CPP_D027 The	unary	&
operator	shall
not	be
overloaded

Yes

CPP_D028 Within	an
enumerator
list,	the	value
of	an
implicitly-
specified
enumeration
constant
shall	be

Yes

C
Checks

www.scitools.com Page	68/413

shall	be

unique
CPP_D029 Destructor

Set	Data	Ptr
to	0

Yes

CPP_D031 Non-Virtual
Destructors
in	Base
Classes

Yes

CPP_D032 Virtual
Function	Call
In	Destructor

Yes

CPP_D033 A	function
shall	not	be
declared
implicitly

Yes

CPP_D034 Datamember
s	should	be
declared
private

Yes

CPP_D035 Destructor	of
a	base	class
shall	be
public	virtual,
public
override	or
protected
non-virtual

Yes

CPP_D036 Volatile
keyword	shall
not	be	used

Yes

CPP_D037 Functions
shall	not	be
declared	at
block	scope

Yes

CPP_D038 When	an
array	with
external
linkage	is
declared,	its
size	shall	be
stated
explicitly

Yes

C
Checks

www.scitools.com Page	69/413

CPP_D039 A	function
definition
shall	only	be
placed	in	a
class
definition	if
(1)	the
function	is
intended	to
be	inlined	(2)
it	is	a
member
function
template	(3)
it	is	a
member
function	of	a
class
template

Yes

CPP_D040 All
declarations
of	an	object
or	function
shall	have
compatible
types

Yes

CPP_D041 The	One
Definition
Rule

Yes

CPP_D042 If	a	function
has	internal
linkage	then
all
redeclaration
s	shall
include	the
static	storage
class
specifier

Yes

CPP_D043 Static	and
thread-local
objects	shall

Yes

C
Checks

www.scitools.com Page	70/413

objects	shall

be	constant-
initialized

CPP_D044 Declarations
at	Lowest
Scope

Yes

CPP_D045 A	type,
object	or
function	that
is	used	in
multiple
translation
units	shall	be
declared	in
one	and	only
one	file

Yes

CPP_D046 Constexpr	or
const
specifiers
shall	be	used
for
immutable
data
declaration

Yes

CPP_D047 The
constexpr
specifier
shall	be	used
for	values
that	can	be
determined
at	compile
time

Yes

CPP_D048 The	auto
specifier
shall	not	be
used	apart
from
following
cases:	(1)	to
declare	that	a
variable	has
the	same

Yes

C
Checks

www.scitools.com Page	71/413

the	same

type	as
return	type	of
a	function
call,	(2)	to
declare	that	a
variable	has
the	same
type	as
initializer	of
non-
fundamental
type,	(3)	to
declare
parameters
of	a	generic
lambda
expression,
(4)	to	declare
a	function
template
using	trailing
return	type
syntax

CPP_D049 A	class,
structure,	or
enumeration
shall	not	be
declared	in
the	definition
of	its	type

Yes

CPP_D050 Enumerations
shall	be
declared	as
scoped	enum
classes

Yes

CPP_D051 A	non-type
specifier
shall	be
placed	before
a	type
specifier	in	a
declaration.

Yes

C
Checks

www.scitools.com Page	72/413

CPP_D052 Use	the	same
identifier	in
definition	and
declaration
of	functions.

Yes

CPP_D053 Multiple	Base
Classes

Yes

CPP_D054 Virtual
function
declaration
shall	contain
exactly	one
of	the	three
specifiers:	(1)
virtual,	(2)
override,	(3)
final

Yes

CPP_D055 All	Checks/
Language
Specific/C
and	C++/
Destructors/
Non-Virtual
Destructors
in	Base
Classes

Yes

CPP_D056 User-defined
assignment
operator	shall
not	be	virtual

Yes

CPP_D057 Hierarchies
should	be
based	on
interface
classes

Yes

CPP_D058 A	non-POD
type	should
be	defined	as
class

Yes

CPP_D059 Friend
declarations
shall	not	be

Yes

C
Checks

www.scitools.com Page	73/413

shall	not	be

used.
CPP_D060 If	a	class

declares	a
copy	or	move
operation,	or
a	destructor,
either	via
"=default",
"=delete",	or
via	a	user-
provided
declaration,
then	all
others	of
these	five
special
member
functions
shall	be
declared	as
well.

Yes

CPP_D061 Constructors
shall
explicitly
initialize	all
virtual	base
classes,	all
direct	non-
virtual	base
classes	and
all	non-static
data
members.

Yes

CPP_D062 Both	NSDMI
and	a	non-
static
member
initializer	in	a
constructor
shall	not	be
used	in	the
same	type.

Yes

C
Checks

www.scitools.com Page	74/413

CPP_D063 If	all	user-
defined
constructors
of	a	class
initialize	data
members
with	constant
values	that
are	the	same
across	all
constructors,
then	data
members
shall	be
initialized
using	NSDMI
instead.

Yes

CPP_D064 All
constructors
that	are
callable	with
a	single
argument	of
fundamental
type	shall	be
declared
explicit.

Yes

CPP_D065 Common
class
initialization
for	non-
constant
members
shall	be	done
by	a
delegating
constructor.

Yes

CPP_D066 If	a	public
destructor	of
a	class	is
non-virtual,
then	the

Yes

C
Checks

www.scitools.com Page	75/413

then	the

class	should
be	declared
final.

CPP_D067 All	class	data
members
that	are
initialized	by
the
constructor
shall	be
initialized
using
member
initializers.

Yes

CPP_D068 If	the
behavior	of	a
user-defined
special
member
function	is
identical	to
implicitly
defined
special
member
function,
then	it	shall
be	defined
=default	or
be	left
undefined.

Yes

CPP_D069 Member	Data
in	Non-POD
Class	not
Private

Yes

CPP_D070 Template
specialization
shall	be
declared	in
the	same	file
as	the
primary

Yes

C
Checks

www.scitools.com Page	76/413

primary

template
CPP_D071 All	user-

provided
class
destructors,
deallocation
functions,
move
constructors,
move
assignment
operators
and	swap
functions
shall	not	exit
with	an
exception.	A
noexcept
exception
specification
shall	be
added	to
these
functions	as
appropriate

Yes

CPP_D072 Non-
standard
entities	shall
not	be	added
to	standard
namespaces

Yes

CPP_D073 There	shall
be	one
variable
declaration
per	line	

Yes

CPP_D074 An	external
variable	shall
not	be	set	to
a	value
where	it	is
being

Yes

C
Checks

www.scitools.com Page	77/413

being

declared
CPP_D075 Incorrect

Order	of
Initialization

Yes

CPP_D076 If	a	class
requires	a
virtual
destructor
but	has
nothing	to
undo	from	a
constructor,
an	empty
implementati
on	should	be
provided.

Yes

CPP_DD000 The	defines,
typedefs,
structures,
externals,
globals,
statics,
external
prototypes,
and	local
prototypes
shall	be
grouped	by
category.

Yes

CPP_DD001 Use	of	global
functions	and
variables
shall	be
limited

Yes

CPP_DD002 Globals
should	not	be
used	in
macros

Yes

CPP_DD003 There	shall
be	a	function
prototype	for
all	functions

Yes

C
Checks

www.scitools.com Page	78/413

CPP_DD004 Prototypes
for	static
functions
shall	include
the	static
storage	class

Yes

CPP_DD005 Any	defined
constants
that	are	used
as	argument
or	return
variables
shall	be
placed	in	an
include	file

Yes

CPP_DD006 Initializer	lists
shall	be
written	in	the
order	in
which	they
are	declared

Yes

CPP_DD007 The	private
keyword
should	be
used	in	class
definitions

Yes

CPP_DD008 Nesting
template
class
definitions
should	be
avoided.

Yes

CPP_DD009 Assignment
operators
should	check
for	self-
assignment

Yes

CPP_DD010 The	use	of
friend
classes
should	be
avoided

Yes

C
Checks

www.scitools.com Page	79/413

CPP_DD011 If	the
subscript
operator
(operator[])
is
overloaded,
both	the
const	and
non-const
versions
should	be
defined.

Yes

CPP_DD012 Layering
techniques,
where
applicable,
should	be
used	instead
of	private
inheritance.

Yes

CPP_DD013 Public
Inheritance
not	Used	in	a
"is-a"
Relationship

Yes

CPP_DD014 Use	the	same
parameter
names	and
type
qualifiers	for
all
declarations
and
definitions

Yes

CPP_DD015 Overload
allocation
and
deallocation
functions	as
a	pair	in	the
same	scope

Yes

CPP_DD016 Do	not	write Yes

C
Checks

www.scitools.com Page	80/413

Do	not	write

syntactically
ambiguous
declarations

CPP_DD017 Avoid	cycles
during
initialization
of	static
objects

Yes

CPP_DD018 Obey	the
one-
definition	rule

Yes

CPP_DD019 Arrays	shall
not	be
partially
initialized

Yes

CPP_DD020 An	element
of	an	object
shall	not	be
initialized
more	than
once

Yes

CPP_DD021 Where
designated
initializers
are	used	to
initialize	an
array	object
the	size	of
the	array
shall	be
specified
explicitly

Yes

CPP_DD022 Make	sure
that	objects
are	initialized
before	they
are	used

Yes

CPP_DD023 Use	the	same
form	in
correspondin
g	uses	of
new	and

Yes

C
Checks

www.scitools.com Page	81/413

new	and

delete
CPP_DD024 Postpone

variable
definitions	as
long	as
possible

Yes

CPP_DD025 Avoid	hiding
inherited
names

Yes

CPP_DD026 Never
redefine	an
inherited
non-virtual
function

Yes

CPP_E000 A	class	type
exception
shall	always
be	caught	by
reference

Yes

CPP_E001 There	should
be	at	least
one
exception
handler	to
catch	all
otherwise
unhandled
exceptions

Yes

CPP_E003 Catch	Const
References

Yes

CPP_E004 Destructors
Not	Throw
Exceptions

Yes

CPP_E005 An	empty
throw
(throw;)	shall
only	be	used
in	the
compound-
statement	of
a	catch
handler

Yes

C
Checks

www.scitools.com Page	82/413

CPP_E006 Order	of
Catch	Blocks
with	Derived
Classes

Yes

CPP_E007 An	exception
object	should
not	have
pointer	type

Yes

CPP_E008 Exceptions
shall	be
raised	only
after	start-up
and	before
termination
of	the
program

Yes

CPP_E009 Exceptions
thrown	shall
be	the	type
indicated	by
the	function

Yes

CPP_E011 No	"errno"
allowed

Yes

CPP_E012 NULL	shall
not	be
thrown
explicitly

Yes

CPP_E013 Throw
exceptions
by	value,	not
by	pointer

Yes

CPP_E014 The
assignment-
expression	of
a	throw
statement
shall	not
itself	cause
an	exception
to	be	thrown

Yes

CPP_E015 Expressions
with	type

Yes

C
Checks

www.scitools.com Page	83/413

with	type

bool	shall	not
be	used	as
operands	to
built-in
operators
other	than
the
assignment
operator	=,
the	logical
operators
&&,	||,	!,	the
equality
operators	==
and	!=,	the
unary	&
operator,	and
the
conditional
operator

CPP_E016 Character
Operators

Yes

CPP_E017 Code	Slicing
Should	Not
Occur

Yes

CPP_E018 Expressions
with	type
enum	or
enum	class
shall	not	be
used	as
operands	to
built-in	and
overloaded
operators
other	than
the	subscript
operator	[],
the
assignment
operator	=,
the	equality

Yes

C
Checks

www.scitools.com Page	84/413

the	equality

operators	==
and	!	=,	the
unary	&
operator,	and
the	relational
operators	<,
<=,	>,	>=

CPP_E019 Avoid
Trigraphs

Yes

CPP_E020 Octal
constants
(other	than
zero)	and
octal	escape
sequences
(other	than
"\0")	shall
not	be	used.

Yes

CPP_E021 Octal	and
Hexadecimal
Sequences

Yes

CPP_E022 Escape
sequences
are
standardized

Yes

CPP_E023 Expression
uses	operand
of	side-effect
more	than
once

Yes

CPP_E024 Signed
operands	to
modulus	or
division
operator

Yes

CPP_E025 Floating
Equality	Test

Yes

CPP_E027 Only	those
escape
sequences
that	are
defined	in

Yes

C
Checks

www.scitools.com Page	85/413

defined	in

ISO/IEC
14882<2014
shall	be	used

CPP_E028 Hexadecimal
constants
should	be
upper	case

Yes

CPP_E029 A	"U"	suffix
shall	be
applied	to	all
octal	or
hexadecimal
integer
literals	of
unsigned
type.

Yes

CPP_E030 Concatenatin
g	String
Literals	of
Different
Encodings

Yes Automated Required

CPP_E031 Traditional	C-
style	casts
shall	not	be
used

Yes

CPP_E032 Infeasible
Paths

Yes

CPP_E033 Do	not	rely
on	the	value
of	a	moved-
from	object

Yes

CPP_E034 Limited
dependence
should	be
placed	on	C+
+	operator
precedence
rules	in
expressions

Yes

CPP_E035 Parameter
list	(possibly
empty)	shall

Yes

C
Checks

www.scitools.com Page	86/413

empty)	shall

be	included
in	every
lambda
expression

CPP_E036 Specify
Lambda
Return	Type

Yes

CPP_E037 Lambda
expressions
should	not	be
defined
inside
another
lambda
expression

Yes

CPP_E038 Identical
unnamed
lambda
expressions
shall	be
replaced	with
a	named
function	or	a
named
lambda
expression

Yes

CPP_E039 A	lambda
shall	not	be
an	operand
to	decltype
or	typeid

Yes

CPP_E040 dynamic_cas
t	should	not
be	used

Yes

CPP_E041 reinterpret_c
ast	shall	not
be	used

Yes

CPP_E042 Operands	of
Logical
Boolean
Operators

Yes

CPP_E043 The Yes

C
Checks

www.scitools.com Page	87/413

The

increment	(+
+)	and
decrement
(--)
operators
shall	not	be
mixed	with
other
operators	in
an
expression

CPP_E044 Each
operand	of
the	!
operator,	the
logical	&&	or
the	logical	||
operators
shall	have
type	bool

Yes

CPP_E045 Evaluation	of
the	operand
to	the	sizeof
operator	shall
not	contain
side	effects

Yes

CPP_E046 The	right
hand
operand	of	a
shift	operator
shall	lie
between	zero
and	one	less
than	the
width	in	bits
of	the
underlying
type	of	the
left	hand
operand.

Yes

CPP_E047 The	ternary
conditional

Yes

C
Checks

www.scitools.com Page	88/413

conditional

operator	shall
not	be	used
as	a	sub-
expression

CPP_E048 Each
expression
statement
and	identifier
declaration
shall	be
placed	on	a
separate	line

Yes

CPP_E049 The	comma
operator	shall
not	be	used.

Yes

CPP_E050A Evaluation	of
the	operand
to	the	typeid
operator	shall
not	contain
side	effects

Yes

CPP_E050B The	right
hand
operand	of
the	integer
division	or
remainder
operators
shall	not	be
equal	to	zero

Yes

CPP_E051 Unary	Minus
Operator
Applied	to	an
Expression
with	an
Unsigned
Type

Yes

CPP_E052 The	right-
hand
operand	of	a
logical	&&	or
||	operator

Yes

C
Checks

www.scitools.com Page	89/413

||	operator

should	not
contain
persistent
side	effects

CPP_E053 Empty	Throw Yes
CPP_E054 NULL	Throw Yes
CPP_E055 Exception

Object
Yes

CPP_E056 A	lambda
expression
object	shall
not	outlive
any	of	its
reference-
captured
objects

Yes

CPP_E057 Only
instances	of
types	derived
from
std::exceptio
n	should	be
thrown

Yes

CPP_E058 An	exception
object	shall
not	be	a
pointer

Yes

CPP_E059 All	thrown
exceptions
should	be
unique

Yes

CPP_E060 If	a	function
exits	with	an
exception,
then	before	a
throw,	the
function	shall
place	all
objects/
resources
that	the
function

Yes

C
Checks

www.scitools.com Page	90/413

function

constructed
in	valid	states
or	it	shall
delete	them

CPP_E061 Dynamic
exception-
specification
shall	not	be
used

Yes

CPP_E062 A	class	type
exception
shall	be
caught	by
reference	or
const
reference

Yes

CPP_E063 Catch-all
(ellipsis	and
std::exceptio
n)	handlers
shall	be	used
only	in	(a)
main,	(b)	task
main
functions,	(c)
in	functions
that	are
supposed	to
isolate
independent
components
and	(d)	when
calling	third-
party	code
that	uses
exceptions
not
according	to
AUTOSAR	C+
+14
guidelines

Yes

CPP_E064 Unhandled Yes

C
Checks

www.scitools.com Page	91/413

Unhandled

Exceptions
on	Main
Function

CPP_E065 Condition	of
if	statement
shall	be	bool

Yes

CPP_E066 Const	Should
be	placed	on
the	left-hand
side	of	the
comparison

Yes

CPP_E067 Floats	shall
not	be	tested
for	direct
equality

Yes

CPP_E068 Provide	a
valid	ordering
predicate

Yes

CPP_E069 Assignment
in
SubExpressio
ns

Yes

CPP_E070 Boolean
operators

Yes

CPP_E072 Int	to	Float
Conversion

Yes

CPP_E073 An	implicit
integral
conversion
shall	not
change	the
signedness
of	the
underlying
type

Yes

CPP_E074 Operands
shall	not	be
of	an
inappropriate
essential
type

Yes

CPP_E075 Both Yes

C
Checks

www.scitools.com Page	92/413

Both

operands	of
an	operator
in	which	the
usual
arithmetic
conversions
are
performed
shall	have
the	same
essential
type
category

CPP_E077 The	value	of
a	composite
expression
shall	not	be
assigned	to
an	object
with	wider
essential
type

Yes

CPP_E078 The	value	of
a	composite
expression
shall	not	be
cast	to	a
different
essential
type
category	or	a
wider
essential
type

Yes

CPP_E079 Conversions
shall	not	be
performed
between	a
pointer	to	an
incomplete
type	and
any	other

Yes

C
Checks

www.scitools.com Page	93/413

any	other

type
CPP_E080 A	cast	shall

not	be
performed
between	a
pointer	to
object	type
and	a	pointer
to	a	different
object	type

Yes

CPP_E081 A	conversion
should	not	be
performed
between	a
pointer	to
object	and	an
integer	type

Yes

CPP_E082 Initializer	lists
shall	not
contain
persistent
side	effects

Yes

CPP_E083 The
controlling
expression	of
an	if
statement
and	the
controlling
expression	of
an	iteration-
statement
shall	have
essentially
Boolean	type

Yes

CPP_E084 The	macro
NULL	shall
be	the	only
permitted
form	of
integer	null
pointer

Yes

C
Checks

www.scitools.com Page	94/413

pointer

constant
CPP_E085 The	result	of

an
assignment
operator
should	not	be
used

Yes

CPP_E086 A	loop
counter	shall
not	have
essentially
floating	type

Yes

CPP_E087 Minimize
casting

Yes

CPP_EH000 Program	shall
not	be
abruptly
terminated

Yes

CPP_EH001 The
std::terminat
e()	function
shall	not	be
called
implicitly

Yes

CPP_EH002 Library
objects	shall
not	generate
error
messages
directly

Yes

CPP_EH003 Destructors
should	not
throw
exceptions

Yes

CPP_EH004 Exceptions
should	be
caught	only
by	reference

Yes

CPP_EH005 A	declaration
of	non-
throwing
function	shall

Yes

C
Checks

www.scitools.com Page	95/413

function	shall

contain
noexcept
specification

CPP_EH006 If	a	function
is	declared	to
be	noexcept,
noexcept(tru
e)	or
noexcept(<tr
uecondition>
),	then	it	shall
not	exit	with
an	exception

Yes

CPP_EH007 Each
exception
explicitly
thrown	in	the
code	shall
have	a
handler	of	a
compatible
type	in	all	call
paths	that
could	lead	to
that	point

Yes

CPP_EH008 Exceptions
thrown
across
execution
boundaries

Yes

CPP_EH009 New	Method
Throwing	an
Exception

Yes

CPP_EH010 Use
Assertion
Statements

Yes

CPP_EH011 Catch
exceptions
by	lvalue
reference

Yes

CPP_F000 All	prototype
parameters

Yes

C
Checks

www.scitools.com Page	96/413

parameters

must	have	an
identifier.

CPP_F001 All	class
templates,
function
templates,
class
template
member
functions	and
class
template
static
members
shall	be
instantiated
at	least	once

Yes

CPP_F002 Const
member
functions
shall	not
return	non-
const
pointers	or
references	to
class-data

Yes

CPP_F003 Unused
Functions

Yes

CPP_F004 Functions
with	no
parameters
need	explicit
void	keyword

Yes

CPP_F005 Declare
functions	at
file	scope

Yes

CPP_F006 A	Function
identifier
shall	either
be	used	to
call	the
function	or	it

Yes

C
Checks

www.scitools.com Page	97/413

function	or	it

shall	be
preceded	by
&

CPP_F007 Functions
must	not
return
objects	by
value.

Yes

CPP_F008 Functions
shall	not	be
defined	using
the	ellipsis
notation

Yes

CPP_F009 Use	Named
Parameters
and
Prototype
Form

Yes

CPP_F010 Functions
shall	not	be
declared
implicitly

Yes

CPP_F011 Inline
functions
defined	in
the	class
body

Yes

CPP_F012 The	identifier
main	shall
not	be	used
for	a	function
other	than
the	global
function	main

Yes

CPP_F013 Member
functions
shall	not
return	non-
const
handles	to
class-data

Yes

CPP_F014 If	a	member Yes

C
Checks

www.scitools.com Page	98/413

If	a	member

function	can
be	made
static	then	it
shall	be
made	static,
otherwise	if	it
can	be	made
const	then	it
shall	be
made	const

CPP_F015 Missing
parameter
name	in
function
declarations

Yes

CPP_F016 variable
numbers	of
arguments
shall	not	be
used.

Yes

CPP_F017 Overloaded
function
templates
shall	not	be
explicitly
specialized

Yes

CPP_F018 Parameters	in
an	overriding
virtual
function	shall
either	use
the	same
default
arguments	as
the	function
they	override,
or	else	shall
not	specify
any	default
arguments.

Yes

CPP_F019 A	pointer	or
reference

Yes

C
Checks

www.scitools.com Page	99/413

reference

parameter	in
a	function
shall	be
declared	as
pointer	to
const	or
reference	to
const	if	the
correspondin
g	object	is
not	modified

CPP_F020 use	the	same
identifier	in
definition	and
declaration
of	functions.

Yes

CPP_F021 The	features
of	<stdarg.h>
shall	not	be
used

Yes

CPP_F022 Objects
should	not	be
passed	by
reference

Yes

CPP_F023 A	function
parameter
should	not	be
modified

Yes

CPP_F024 The	value
returned	by	a
function	shall
be	used

Yes

CPP_F025 All	functions
with	void
return	type
shall	have
external	side
effect(s)

Yes

CPP_F026 Every
function
defined	in	an
anonymous

Yes

C
Checks

www.scitools.com Page	100/413

anonymous

namespace,
or	static
function	with
internal
linkage,	or
private
member
function	shall
be	used

CPP_F027 There	shall
be	no	unused
named
parameters	in
non-virtual
functions

Yes

CPP_F028 There	shall
be	no	unused
named
parameters	in
the	set	of
parameters
for	a	virtual
function	and
all	the
functions
that	override
it

Yes

CPP_F029 operator
"new"	and
operator
"delete"	shall
be	defined
together

Yes

CPP_F030 If	a	project
has	a	sized
or	unsized
version	of
operator
"delete"
globally
defined,	then
both	sized

Yes

C
Checks

www.scitools.com Page	101/413

both	sized

and	unsized
versions	shall
be	defined

CPP_F031 A	function
shall	not
return	a
reference	or
a	pointer	to
an	automatic
variable
(including
parameters),
defined
within	the
function.

Yes

CPP_F032 A	function
shall	not
return	a
reference	or
a	pointer	to	a
parameter
that	is
passed	by
reference	to
const.

Yes

CPP_F033 Always	return
a	value	in
non-void
functions

Yes

CPP_F034 Trivial
accessor	and
mutator
functions
should	be
inlined.

Yes

CPP_F035 Non-virtual
public	or
protected
member
functions
shall	not	be
redefined	in

Yes

C
Checks

www.scitools.com Page	102/413

redefined	in

derived
classes

CPP_F037 Time
Handling
Functions	of
<ctime>

Yes

CPP_F038_A Check
Parameters
and	Return
Values	-
Ignored
Return
Values

Yes

CPP_F039 A	function
that	contains
"forwarding
reference"	as
its	argument
shall	not	be
overloaded

Yes

CPP_F040 A	virtual
function	shall
only	be
overridden
by	a	pure
virtual
function	if	it
is	itself
declared	as
pure	virtual

Yes

CPP_F041 Member
functions
shall	not
return	non-
const	raw
pointers	or
references	to
private	or
protected
data	owned
by	the	class

Yes

CPP_F042 If	two Yes

C
Checks

www.scitools.com Page	103/413

If	two

opposite
operators	are
defined,	one
shall	be
defined	in
terms	of	the
other

CPP_F043 Comparison
operators
shall	be	non-
member
functions
with	identical
parameter
types	and
noexcept

Yes

CPP_F044 Overloaded
Function	Not
Visible	From
Where	it	is
Called

Yes

CPP_F045 Virtual
functions
shall	not	be
introduced	in
a	final	class

Yes

CPP_F046 Predicate
Function
Objects
Copied
Incorrectly

Yes

CPP_F047 A	template
constructor
shall	not
participate	in
overload
resolution	for
a	single
argument	of
the	enclosing
class	type

Yes

CPP_F048 A	non- Yes

C
Checks

www.scitools.com Page	104/413

A	non-

member
generic
operator	shall
only	be
declared	in	a
namespace
that	does	not
contain	class
(struct)	type,
enum	type	or
union	type
declarations

CPP_F049 Explicit
specialization
s	of	function
templates
shall	not	be
used

Yes

CPP_F050 The	noexcept
specification
of	a	function
shall	either
be	identical
across	all
translation
units,	or
identical	or
more
restrictive
between	a
virtual
member
function	and
an	overrider

Yes

CPP_F051 A	function
should	be
inlined	only	if
it	has	one	or
two	lines	of
code

Yes

CPP_F052 The	function
gets()	should

Yes

C
Checks

www.scitools.com Page	105/413

gets()	should

not	be	used
CPP_F053 Every

function	shall
have	an
explicitly
declared
return	type.

Yes

CPP_F054 Boolean
functions
shall
explicitly
return	true	or
false

Yes

CPP_F055 The	default
parameter
list,	when
redeclaring
or	overriding
methods,
should	be
kept	constant

Yes

CPP_F056 Each	function
shall	contain
a	prologue

Yes

CPP_F057 Function
prologue
shall	be	in
header	or
source

Yes

CPP_F058 Function
prologue
shall	contain
certain
specific
information

Yes

CPP_F059 Variable-
length
argument
lists	should
not	be	used

Yes

CPP_F060 A	method
that	does	not

Yes

C
Checks

www.scitools.com Page	106/413

that	does	not

change	the
visible
properties	of
a	class	shall
be	declared
const

CPP_F061 The	type	of
the	return
and	all
method
arguments
(even	type
void)	shall	be
specified
when
defining	a
method

Yes

CPP_F062 When
overloading
standardized
operators
(e.g.,	a	+=	b,
a-=b	etc.),
the	resulting
behavior
should
remain
consistent
with	the
expected
outcome	of
the	operator.

Yes

CPP_F063 Member
function
arguments
should	not
share	the
same	name
as	class	state
variables

Yes

CPP_F064 Member
functions

Yes

C
Checks

www.scitools.com Page	107/413

functions

should
always	be
declared
const	unless
they	modify
state
variables

CPP_F065 Any
parameter
not	modified
by	a	method
should	be
passed	to	the
method	as	a
const.

Yes

CPP_F066 Tail-Call
Optimization

Yes

CPP_F067 Functions
declared	with
the
[[noreturn]]
attribute	shall
not	return

Yes

CPP_F069 A	signal
handler	must
be	a	plain	old
function

Yes

CPP_F070 Consider
alternatives
to	virtual
functions

Yes

CPP_H001 The
backslash
character
should	not
occur	in	a
header	file
name

Yes

CPP_H002 The	',	",	/*	or
//	characters
shall	not
occur	in	a

Yes

C
Checks

www.scitools.com Page	108/413

occur	in	a

header	file
name

CPP_H003 Definitions	in
Header	Files

Yes

CPP_H004 There	shall
be	no
unnamed
namespaces
in	header
files.

Yes

CPP_H005 Objects	or
functions
with	external
linkage	shall
be	declared
in	a	header
file

Yes

CPP_H006 It	shall	be
possible	to
include	any
header	file	in
multiple
translation
units	without
violating	the
One
Definition
Rule

Yes

CPP_H007 Unnecessary
#Includes

Yes

CPP_H008 using-
directives
and	using-
declarations
(excluding
class	scope
or	function
scope	using-
declarations)
shall	not	be
used	in
header	files.

Yes

C
Checks

www.scitools.com Page	109/413

CPP_H009 Header	files,
that	are
defined
locally	in	the
project,	shall
have	a	file
name
extension	of
one	of:	".h",
".hpp"	or
".hxx"

Yes

CPP_H010 Header	File
Name

Yes

CPP_H011 Absolute
path	names
shall	not	be
used	for
header	files

Yes

CPP_H012 All	references
to	header
files	shall	be
listed	one	per
line

Yes

CPP_H013 Names	of
private
header	files
should	not	be
identical	to
names	of
library
header	files

Yes

CPP_H014 All	public
header	files
shall	be
capable	of
being
included	by	a
C++	file	as
well	as	a	C
file

Yes

CPP_H016 If	prototypes,
typedefs,

Yes

C
Checks

www.scitools.com Page	110/413

typedefs,

macros,
structure
definitions,	or
enums	are
needed	in
multiple
modules,
they	shall	be
placed	in
header	files

CPP_H017 C++	version
of	the	header
file	should	be
used

Yes

CPP_H018 When
including	C
Standard
Library
header	files,
C++
Standard
Library
header	files
without	a	'.h'
appended
should	be
used

Yes

CPP_H019 Forward
referencing
should	be
used,	when
appropriate,
over	direct
inclusion
when
documenting
dependencie
s	within	a
header	file.

Yes

CPP_H020 The	standard
header	file
<tgmath.h>

Yes

C
Checks

www.scitools.com Page	111/413

<tgmath.h>

shall	not	be
used

CPP_H021 The	standard
header	file
<setjmp.h>
shall	not	be
used

Yes

CPP_I000 A	class,
union	or
enum	name
(including
qualification,
if	any)	shall
be	a	unique
identifier

Yes

CPP_I001 Different
identifiers
shall	be
typographical
ly
unambiguous

Yes

CPP_I002 External
identifiers
shall	be
distinct

Yes

CPP_I003 Identifiers
that	define
objects	or
functions
with	external
linkage	shall
be	unique

Yes

CPP_I005 Identifier
name	reuse

Yes

CPP_I006 Identifiers
shall	be
distinct	from
macro	names

Yes

CPP_I007 Identifiers
declared	in
the	same
scope	and

Yes

C
Checks

www.scitools.com Page	112/413

scope	and

name	space
shall	be
distinct

CPP_I008 Identifiers
that	define
objects	or
functions
with	internal
linkage
should	be
unique

Yes

CPP_I009 Macro
identifiers
shall	be
distinct

Yes

CPP_I010 The	identifier
name	of	a
non-member
object	or
function	with
static	storage
duration
should	not	be
reused

Yes

CPP_I011 Identifier
name
significance

Yes

CPP_I012 Static	name
reuse

Yes

CPP_I013 A	tag	name
shall	be	a
unique
identifier

Yes

CPP_I014 A	typedef
name	shall
be	a	unique
identifier.

Yes

CPP_I015 No	identifier
in	one	name
space	should
have	the
same	spelling

Yes

C
Checks

www.scitools.com Page	113/413

same	spelling

as	an
identifier	in
another
name	space.

CPP_I016 Reserved
Identifiers	or
Macros

Yes

CPP_I017 Shadowed
Identifiers

Yes

CPP_I018 A	class	or
enumeration
name	shall
not	be
hidden	by	a
variable,
function	or
enumerator
declaration	in
the	same
scope

Yes

CPP_I019 The	identifier
name	of	a
non-member
object	with
static	storage
duration	or
static
function	shall
not	be
reused	within
a	namespace

Yes

CPP_I020 An	identifier
name	of	a
function	with
static	storage
duration	or	a
non-member
object	with
external	or
internal
linkage
should	not	be

Yes

C
Checks

www.scitools.com Page	114/413

should	not	be

reused
CPP_I021 Universal

character
names	shall
be	used	only
inside
character	or
string	literals

Yes

CPP_I022 Similiar	Entity
Names	within
Multiple
Inheritance

Yes

CPP_I023 Uppercase
'O'	shall	not
be	used	as
an	identifier

Yes

CPP_I024 Lowercase	'l'
shall	not	be
used	as	an
identifier

Yes

CPP_I025 The	using
namespace
directive
should	be
used	only	at
the	method
or	function
scope.

Yes

CPP_L000 Calls	to
COTS	library
functions
that	might
throw	an
exception
must	be
enclosed	in	a
try	block.

Yes

CPP_L001 The	C	library
shall	not	be
used

Yes

CPP_L002 The	signal
handling

Yes

C
Checks

www.scitools.com Page	115/413

handling

facilities	of
<csignal>
shall	not	be
used

CPP_L003 The	stream
input/output
library
<cstdio>
shall	not	be
used

Yes

CPP_L004 <cstdlib>
Library
Functions

Yes

CPP_L005 Avoid	atof,
atoi,	atol,	and
atoll	from
<cstdlib>	or
<stdlib.h>

Yes

CPP_L006 Unbounded
Functions	of
<cstring>

Yes

CPP_L007 Avoid	using
the	library
<ctime>

Yes

CPP_L008 No	"errno"
allowed

Yes

CPP_L009 No	offsetof
allowed

Yes

CPP_L010 The	setjmp
macro	and
the	longjmp
function	shall
not	be	used

Yes

CPP_L011 Signal.h
should	not	be
used

Yes

CPP_L012 Standard
Library
Function
Names

Yes

CPP_L013 Avoid
including

Yes

C
Checks

www.scitools.com Page	116/413

including

stdio.h
CPP_L014 Library

stdlib.h	-
avoid:	abort,
exit,	getenv
and	system

Yes

CPP_L015 Guarantee
that	library
functions	do
not	overflow

Yes

CPP_L016 The	library
<time.h>
shall	not	be
used

Yes

CPP_L017 Inputs	from
independent
components
shall	be
validated

Yes

CPP_L018 Ensure	your
random
number
generator	is
properly
seeded

Yes

CPP_L019 Random
number
engines	shall
not	be
default-
initialized

Yes

CPP_L020 Do	not
unlock	or
destroy
another
POSIX
thread's
mutex

Yes

CPP_L021 An	iterator
shall	not	be
implicitly
converted	to

Yes

C
Checks

www.scitools.com Page	117/413

converted	to

const_iterato
r

CPP_L022 An	argument
to
std::forward
shall	not	be
subsequently
used

Yes

CPP_L023 The
std::move
shall	not	be
used	on
objects
declared
const	or
const&

Yes

CPP_L024 Forwarding
values	to
other
functions
shall	be	done
via:	(1)
std::move	if
the	value	is
an	rvalue
reference,	(2)
std::forward
if	the	value	is
forwarding
reference

Yes

CPP_L025 The	std::bind
shall	not	be
used

Yes

CPP_L026 Alternate
input	and
output
operations	on
a	file	stream
shall	not	be
used	without
an
intervening

Yes

C
Checks

www.scitools.com Page	118/413

intervening

flush	or
positioning
call

CPP_L027 All	std::hash
specialization
s	for	user-
defined	types
shall	have	a
noexcept
function	call
operator

Yes

CPP_L028 The
std::auto_ptr
type	shall	not
be	used

Yes

CPP_L029 Library
<clocale>
(locale.h)

Yes

CPP_L030 Avoid
deadlock
with	POSIX
threads	by
locking	in
predefined
order

Yes

CPP_L031 Evaluation	of
the	operand
to	the	typeid
operator	shall
not	contain
side	effects.

Yes

CPP_L033 Reserved
Builtin
Macros

Yes

CPP_L034 Use	of	the
iostream
library	is
preferred
over	stdio.h

Yes

CPP_M000 Dynamic
heap	memory
allocation

Yes

C
Checks

www.scitools.com Page	119/413

CPP_M001 The	form	of
the	delete
expression
shall	match
the	form	of
the	new
expression
used	to
allocate	the
memory

Yes

CPP_M002 Non-
placement
new	or	delete
expressions
shall	not	be
used

Yes

CPP_M003 Bitwise
operations
and
operations
that	assume
data
representatio
n	in	memory
shall	not	be
performed	on
objects.

Yes

CPP_M004 Moved-from
object	shall
not	be	read-
accessed.

Yes

CPP_M005 Uninitialized
Memory
Read

Yes

CPP_M006 Functions
malloc,
calloc,	realloc
and	free	shall
not	be	used

Yes

CPP_M007 When
reading
strings	a

Yes

C
Checks

www.scitools.com Page	120/413

strings	a

maximum
field	width
should	be
specified

CPP_M008 Dynamically
allocated
memory	shall
be	set	to
some	value
prior	to	its
use	as	an
rvalue	or	in	a
test

Yes

CPP_M009 Memory	that
has	been
freed	shall
not	be
referenced

Yes

CPP_M010 The	new[]
and	delete[]
operators
shall	be	used
for	the
allocation
and
deallocation
of	memory
resources

Yes

CPP_M011 The	delete[]
operator	shall
be	used	to
deallocate
arrays	that
have	been
allocated
with	the
new[]
operator

Yes

CPP_M012 The	delete[]
operator	shall
be	called	in
the

Yes

C
Checks

www.scitools.com Page	121/413

the

destructor
for	all
member
pointers	in	an
object	that
are	pointing
to	memory
that	was
dynamically
allocated	by
that	object

CPP_M013 Users	shall
provide	a
copy
constructor,
destructor
and
assignment
operator	for	a
class	that
uses	dynamic
memory
allocation

Yes

CPP_M014 The	operator
new	should
be	called
with	the
nothrow
option.

Yes

CPP_M015 When
overloading
the	new[]
operator,	a
correspondin
g	delete[]
operator
should	be
provided.

Yes

CPP_M016 Overloaded
new	operator
should	not
hide	the

Yes

C
Checks

www.scitools.com Page	122/413

hide	the

global	new
operator

CPP_M017 All	local
allocations
made	in	a
method,
other	than
the
destructor,
should	be
deallocated
prior	to
exiting	the
method.

Yes

CPP_M018 Dynamic
Memory
Usage	on
Realtime
Phase

Yes

CPP_M019 No	Dynamic
Memory
Allocation

Yes

CPP_M020 Properly	pair
allocation
and
deallocation
functions

Yes

CPP_M021 Declare
objects
shared
between
POSIX
threads	with
appropriate
storage
durations

Yes

CPP_N000 Naming
Convention:
Classes

Yes

CPP_N001 Naming
Convention:
Enumerator

Yes

C
Checks

www.scitools.com Page	123/413

CPP_N002 Naming
Convention:
Enums

Yes

CPP_N003 Naming
Convention:
Files

Yes

CPP_N004 Naming
Convention:
Functions

Yes

CPP_N005 Naming
Convention:
Macros

Yes

CPP_N006 Naming
Convention:
Namespaces

Yes

CPP_N007 Naming
Convention:
Parameters

Yes

CPP_N008 Naming
Convention:
Structs

Yes

CPP_N009 Naming
Convention:
Typedefs

Yes

CPP_N010 Naming
Convention:
Unions

Yes

CPP_N011 Naming
Convention:
Variables

Yes

CPP_N012 Only	those
characters
specified	in
the	C++
Language
Standard
basic	source
character	set
shall	be	used
in	the	source
code

Yes

CPP_N013 Naming Yes

C
Checks

www.scitools.com Page	124/413

Naming

Convention:
Header	File
Names

CPP_N014 Naming
Convention:
Implementati
on	File
Names

Yes

CPP_N015 Implementati
on	files,	that
are	defined
locally	in	the
project,
should	have
a	file	name
extension	of
".cpp"

Yes

CPP_N016 User	defined
suffixes	of
the	user
defined	literal
operators
shall	start
with
underscore
followed	by
one	or	more
letters

Yes

CPP_N017 Digit
sequences
separators	'
shall	only	be
used	as
follows:	(1)
for	decimal,
every	3
digits,	(2)	for
hexadecimal,
every	2
digits,	(3)	for
binary,	every
4	digits

Yes

C
Checks

www.scitools.com Page	125/413

CPP_N018 All	macros
shall	be	fully
capitalized

Yes

CPP_N019 Function	and
variable
names	shall
not	be	fully
capitalized

Yes

CPP_P000 No	more	than
2	levels	of
pointer
indirection

Yes

CPP_P001 Hide
Implementati
on	of
Pointers	Not
Dereferenced

Yes

CPP_P002 Pointer
initialization
must	use	0,
not	NULL.

Yes

CPP_P003 Pointer
function
parameters
must	be
tested	for
equality	to	0
before
accessing
the	data
being
pointed	to

Yes

CPP_P004 Pointers
Must	Be
Initialized

Yes

CPP_P005 Arguments	to
a	function-
like	macro
shall	not
contain
tokens	that
look	like

Yes

C
Checks

www.scitools.com Page	126/413

look	like

preprocessin
g	directives

CPP_P006 std::make_un
ique	shall	be
used	to
construct
objects
owned	by
std::unique_p
tr

Yes

CPP_P007 A
std::unique_p
tr	shall	be
used	over
std::shared_
ptr	if
ownership
sharing	is	not
required

Yes

CPP_P008 Do	Not	Use
#define

Yes

CPP_P009 In	the
definition	of	a
function-like
macro,	each
instance	of	a
parameter
shall	be
enclosed	in
parentheses,
unless	it	is
used	as	the
operand	of	#
or	##

Yes

CPP_P011 Ifndef
Wrappers	or
Pragma	Once

Yes

CPP_P012 File	Include
Matching
Header

Yes

CPP_P013 Function-like
macros	shall

Yes

C
Checks

www.scitools.com Page	127/413

macros	shall

not	be
defined

CPP_P014_A Restrict
Pointer
Usage	-
Multiple
Dereferences

Yes

CPP_P014_B Restrict
Pointer
Usage	-
Other

Yes

CPP_P015 Inactive	CodeYes
CPP_P017 #include

directives	in
a	file	shall
only	be
preceded	by
other
preprocessor
directives	or
comments

Yes

CPP_P018 A	macro	shall
not	be
defined	with
the	same
name	as	a
keyword

Yes

CPP_P019 Macros	in
Blocks

Yes

CPP_P020 C++	macros
shall	only	be
used	for
include
guards,	type
qualifiers,	or
storage	class
specifiers

Yes

CPP_P021 Before
dereferencin
g	a	pointer,
compare	it
with	NULL

Yes

C
Checks

www.scitools.com Page	128/413

CPP_P022 The	pre-
processor
shall	only	be
used	for	file
inclusion	and
include
guards

Yes

CPP_P023 Reserved
identifiers,
macros	and
functions	in
the	standard
library	shall
not	be
defined,
redefined	or
undefined

Yes

CPP_P024 The	address
of	an	object
with
automatic
storage	shall
not	be
assigned	to
another
object	that
may	persist
after	the	first
object	has
ceased	to
exist.

Yes

CPP_P026 avoid	#undef Yes
CPP_P028 A	smart

pointer	shall
only	be	used
as	a
parameter
type	if	it
expresses
lifetime
semantics

Yes

CPP_P029 A	project Yes

C
Checks

www.scitools.com Page	129/413

A	project

should	not
contain
unused
macro
declarations

CPP_P030 Invalid	Use	of
std::shared_
ptr

Yes

CPP_P031 Invalid	Use	of
std::unique_p
tr

Yes

CPP_P032 Cyclic
Structure	of
std::shared_
ptr

Yes

CPP_P033 For	pointer
declarations,
the	asterisk
shall	be
placed	with
the	variable

Yes

CPP_P034 Const
Member
Function
Returning
Non-Const
Pointer	or
Reference

Yes

CPP_P035 std::make_sh
ared	shall	be
used	to
construct
objects
owned	by
std::shared_
ptr

Yes

CPP_P036 A
std::shared_
ptr	shall	be
used	to
represent
shared

Yes

C
Checks

www.scitools.com Page	130/413

shared

ownership
CPP_P037 A

std::unique_p
tr	shall	be
used	to
represent
exclusive
ownership

Yes

CPP_P038 An	already-
owned
pointer	value
shall	not	be
stored	in	an
unrelated
smart	pointer

Yes

CPP_P039 String	literals
shall	not	be
assigned	to
non-constant
pointers

Yes

CPP_P040 Only	nullptr
literal	shall
be	used	as
the	null-
pointer-
constant

Yes

CPP_P041 Subtraction
between
pointers	shall
only	be
applied	to
pointers	that
address
elements	of
the	same
array

Yes

CPP_P042 Pointer
arithmetic
shall	not	be
used	with
pointers	to
non-final

Yes

C
Checks

www.scitools.com Page	131/413

non-final

classes
CPP_P043 >,	>=,	<,	<=

shall	not	be
applied	to
objects	of
pointer	type,
except	where
they	point	to
the	same
array

Yes

CPP_P044 Deleting
Pointers	to
Incomplete
Class	Types

Yes

CPP_P045 Array
indexing	over
pointer
arithmetic

Yes

CPP_P046 A	pointer
pointing	to	an
element	of	an
array	of
objects	shall
not	be
passed	to	a
smart	pointer
of	single
object	type

Yes

CPP_P047 A	cast	shall
not	convert	a
pointer	to	a
function	to
any	other
pointer	type,
including	a
pointer	to
function	type

Yes

CPP_P048 A	pointer	to
member
virtual
function	shall
only	be

Yes

C
Checks

www.scitools.com Page	132/413

only	be

tested	for
equality	with
null-pointer-
constant

CPP_P049 A	pointer
operand	and
any	pointer
resulting
from	pointer
arithmetic
using	that
operand	shall
both	address
elements	of
the	same
array

Yes

CPP_P050 Literal	zero
(0)	shall	not
be	used	as
the	null-
pointer-
constant.

Yes

CPP_P051 Pointer	to
Integer	Cast

Yes

CPP_P052 A	parameter
shall	be
passed	by
reference	if	it
can't	be
NULL

Yes

CPP_P053 A	pointer	to
member	shall
not	access
non-existent
class
members

Yes

CPP_P054 References
should	be
used	instead
of	pointers
when
possible.

Yes

C
Checks

www.scitools.com Page	133/413

CPP_P055 For	pointer
declarations,
the
placement	of
the	*	shall	be
consistent

Yes

CPP_P056 Pointer
functions
shall	return	a
valid	pointer
on	success
and	a	zero
pointer	on
failure

Yes

CPP_P057 A	pointer	to
dynamic
memory	that
is	declared
and	allocated
locally	should
be	declared
as	an
auto_ptr.	

Yes

CPP_P058 Store	newed
objects	in
smart
pointers	in
standalone
statements

Yes

CPP_P060 Prefer	pass-
by-
reference-to-
const	to	pass
by	value

Yes

CPP_P061 Shared
Pointer
Capture

Yes

CPP_PR000 #define	and
#undef	shall
not	be	used
on	a	reserved
identifier	or

Yes

C
Checks

www.scitools.com Page	134/413

identifier	or

reserved
macro	name

CPP_PR001 Include
guards	shall
be	provided

Yes

CPP_PR002 Constants
defined	by
#define	shall
be	explicitly
declared	with
uppercase
suffixes

Yes

CPP_PR003 Macros	shall
not	be	used
to	change
language
syntax

Yes

CPP_PR004 Limit
Preprocessor
Usage

Yes

CPP_PR005 #include
directives
should	only
be	preceded
by
preprocessor
directives	or
comments

Yes

CPP_PR006 There	shall
be	at	most
one
occurrence
of	the	#	or	##
operators	in
a	single
macro
definition

Yes

CPP_PR007 The	defined
preprocessor
operator	shall
only	be	used
in	one	of	the

Yes

C
Checks

www.scitools.com Page	135/413

in	one	of	the

two	standard
forms

CPP_PR021 The	names	of
standard
library
macros	and
objects	shall
not	be
reused

Yes

CPP_PR030 The	#pragma
directive
shall	not	be
used

Yes

CPP_PR031 #error
directive
shall	not	be
used

Yes

CPP_PR032 The	#	and	##
operators
should	not	be
used

Yes

CPP_PR033 The	macro
offsetof	shall
not	be	used

Yes

CPP_PR034 There	shall
be	no	unused
include
directives
(slow)

Yes

CPP_PR036 Invalid
Preprocessor
Directives

Yes

CPP_PR037 Undefined
macro
identifiers
shall	not	be
used	in	#if	or
#elif
preprocessor
directives,
except	as
operands	to

Yes

C
Checks

www.scitools.com Page	136/413

operands	to

the	defined
operator

CPP_PR038 In	the
definition	of	a
function-like
macro,	each
instance	of	a
parameter
shall	be
enclosed	in
parentheses,
unless	it	is
used	as	the
operand	of	#
or	##

Yes

CPP_PR039 Function-like
Macro
Containing
Preprocessin
g	Directives

Yes

CPP_PR040 #include
Directives
Not	Grouped
Together

Yes

CPP_PR041 Incorrect	Use
of	Pre-
processor

Yes

CPP_S000 no	unions Yes
CPP_S001 Flexible	array

members
shall	not	be
declared

Yes

CPP_S002 Incorrect
Initializer
Lists

Yes

CPP_S003 A	type
defined	as
struct	shall:
(1)	provide
only	public
data
members,	(2)

Yes

C
Checks

www.scitools.com Page	137/413

members,	(2)

not	provide
any	special
member
functions	or
methods,	(3)
not	be	a	base
of	another
struct	or
class,	(4)	not
inherit	from
another
struct	or
class

CPP_S004 Unions	Shall
not	be	Used

Yes

CPP_SA_DA
NGLING_POI
NTERS

Dangling
Pointer

Yes High

CPP_SA_DEA
D_STORES

Dead	Stores Yes

CPP_SA_DIV
_ZERO

Division	by
Zero

Yes High

CPP_SA_LEA
KS

Memory	Leak Yes High

CPP_SA_NUL
L_PTR

Null	Pointer
Dereference

Yes High

CPP_SA_STA
CK_ADDRES
S_ESCAPE

Stack
Address
Escape

Yes High

CPP_SA_UN
DEFINED_CA
LL

Undefined
Call

Yes High

CPP_SA_UNI
NITIALIZED

Uninitialized
Value

Yes High

CPP_SA_VIR
TUAL_CALLS

Virtual	Call Yes High

CPP_ST001 Not	more
than	one
space	should
precede	a	";"
with	the
exception	of

Yes

C
Checks

www.scitools.com Page	138/413

exception	of

the	null
statement

CPP_ST002 Equal	signs
should	be
aligned	when
they	occur	in
a	series	of
assignment
operators

Yes

CPP_ST003 Placement	of
braces	for
functions
shall	adhere
to	one	of	the
following
formats	and
shall	be
consistent

Yes

CPP_ST004 Code
between	the
beginning
and	ending
braces	of	a
function	shall
start	with
one	level	of
indentation

Yes

CPP_ST005 Enum	lists
should	not
contain	a
trailing
comma

Yes

CPP_ST006 No	line	of
code	should
extend
beyond
column	80

Yes

CPP_ST007 Declarations
shall	not	be
made	within
an	individual
block	but

Yes

C
Checks

www.scitools.com Page	139/413

block	but

shall	be
placed	at	the
function	level
or	at	the
module	level.

CPP_ST008 Blank	lines
should	be
used	to
separate
distinct
algorithmic
parts

Yes

CPP_ST009 Parentheses
should	be
used	in
lengthy
logical	and
arithmetic
expressions
for	clarity.

Yes

CPP_ST010 Items	should
be	logically
grouped

Yes

CPP_ST011 Inline
functions
should	be
used	instead
of	macros

Yes

CPP_ST012 Names	that
differ	in	case
only	or	that
look	similar
should	not	be
used.

Yes

CPP_ST013 Switch
statements
should	be
used	instead
of	deeply
nested	else-
ifs	when
testing	a

Yes

C
Checks

www.scitools.com Page	140/413

testing	a

variable	for
multiple
values

CPP_ST014 No	line	of
code	should
extend
beyond	80
characters

Yes

CPP_ST015 Incrementing
and
decrementin
g	control
variables	in
loops

Yes

CPP_ST016 Calls	to	free
should	have
an	if	test
around	them
if	it	is
uncertain
that	the
pointer	has
been
properly
allocated.

Yes

CPP_ST017 White	space
shall	not	be
used	in	the
following
places

Yes

CPP_ST018 Continuation
lines	shall	be
indented	at
least	one
level	from	the
line	being
continued

Yes

CPP_ST019 Statements
under	case
labels	shall
be	indented
one	level

Yes

C
Checks

www.scitools.com Page	141/413

CPP_ST020 For	the	if-
else,	while,
do,	and	for
control
structure,	the
statement(s)
shall	be
indented	one
level

Yes

CPP_ST021 Placement	of
braces	for
constructs
shall	be
consistent
within	a
module

Yes

CPP_ST022 Boolean
expressions
involving
non-boolean
values	should
always	use
an	explicit
test	for
equality	or
non-equality.

Yes

CPP_ST023 At	least	one
blank	line
shall	be
placed	before
comments

Yes

CPP_ST024 Functions
shall	have	at
least	one
blank	line
between
them

Yes

CPP_ST025 Each	area	of
declarations
shall	have	at
least	one
blank	line

Yes

C
Checks

www.scitools.com Page	142/413

blank	line

before	and
after	it

CPP_ST026 Class	naming
conventions

Yes

CPP_ST027 Naming
conventions
for	class	data
members	vs.
member
function
internal	data

Yes

CPP_ST028 Data	type
naming
conventions

Yes

CPP_ST029 Immutable
data	naming
conventions

Yes

CPP_ST030 Class	design
should
include	the
following
format

Yes

CPP_ST031 Separate
lines	should
be	used	for
each	member
declaration

Yes

CPP_ST032 Indentation
shall	be	at
least	three
spaces,	and
consistent
across
modules

Yes

CPP_ST033 Short
Functions

Yes

CPP_T000 Typedefs	that
indicate	size
and
signedness
should	be
used	in	place

Yes

C
Checks

www.scitools.com Page	143/413

used	in	place

of	the	basic
numerical
types

CPP_T001 Arguments	to
character-
handling
functions
shall	be
representabl
e	as	an
unsigned
char

Yes

CPP_T002 The
std::vector<b
ool>
specialization
shall	not	be
used

Yes

CPP_T003 There	should
be	no	unused
type
declarations

Yes

CPP_T004 Type	long
double	shall
not	be	used

Yes

CPP_T005 Type	wchar_t
shall	not	be
used

Yes

CPP_T006 The	types
used	for	an
object,	a
function
return	type,
or	a	function
parameter
shall	be
token-for-
token
identical	in	all
declarations
and	re-
declarations

Yes

C
Checks

www.scitools.com Page	144/413

CPP_T007 A	cvalue
expression
shall	not	be
implicitly
converted	to
a	different
underlying
type

Yes

CPP_T008 An	implicit
integral
conversion
shall	not
change	the
signedness
of	the
underlying
type

Yes

CPP_T009 There	shall
be	no	implicit
floating-
integral
conversions

Yes

CPP_T010 An	implicit
integral	or
floating-point
conversion
shall	not
reduce	the
size	of	the
underlying
type

Yes

CPP_T011 There	shall
be	no	explicit
floating-
integral
conversions
of	a	cvalue
expression

Yes

CPP_T012 An	explicit
integral	or
floating-point
conversion

Yes

C
Checks

www.scitools.com Page	145/413

conversion

shall	not
increase	the
size	of	the
underlying
type	of	a
cvalue
expression

CPP_T013 An	explicit
integral
conversion
shall	not
change	the
signedness
of	the
underlying
type	of	a
cvalue
expression

Yes

CPP_T014 If	the	bitwise
operators	~
and	<<	are
applied	to	an
operand	with
an	underlying
type	of
unsigned
char	or
unsigned
short,	the
result	shall
be
immediately
cast	to	the
underlying
type	of	the
operand

Yes

CPP_T015 The	plain
char	type
shall	only	be
used	for	the
storage	and
use	of

Yes

C
Checks

www.scitools.com Page	146/413

use	of

character
values

CPP_T016 Signed	char
and	unsigned
char	type
shall	only	be
used	for	the
storage	and
use	of
numeric
values

Yes

CPP_T017 The	first
operand	of	a
conditional-
operator	shall
have	type
bool

Yes

CPP_T018 Bitwise
operators
shall	only	be
applied	to
operands	of
unsigned
underlying
type

Yes

CPP_T019 C-style	Array Yes
CPP_T020 Casts	from	a

base	class	to
a	derived
class	should
not	be
performed	on
polymorphic
types

Yes

CPP_T021 A	cast	shall
not	remove
any	const	or
volatile
qualification
from	the	type
of	a	pointer
or	reference

Yes

C
Checks

www.scitools.com Page	147/413

CPP_T022 An	object
with	integer
type	or
pointer	to
void	type
shall	not	be
converted	to
an	object
with	pointer
type.

Yes

CPP_T023 Array	to
Pointer
Decay

Yes

CPP_T024 NULL	shall
not	be	used
as	an	integer
value

Yes

CPP_T025 CV-qualifiers
shall	be
placed	on	the
right	hand
side	of	the
type	that	is	a
typedef	or	a
using	name

Yes

CPP_T026 The	typedef
specifier
shall	not	be
used

Yes

CPP_T027 An
expression
with	enum
underlying
type	shall
only	have
values
correspondin
g	to	the
enumerators
of	the
enumeration

Yes

CPP_T028 Enumeration Yes

C
Checks

www.scitools.com Page	148/413

Enumeration

underlying
base	type
shall	be
explicitly
defined

CPP_T029 In	an
enumeration,
either	(1)
none,	(2)	the
first	or	(3)	all
enumerators
shall	be
initialized

Yes

CPP_T030 When
declaring
function
templates,
the	trailing
return	type
syntax	shall
be	used	if	the
return	type
depends	on
the	type	of
parameters.

Yes

CPP_T031 Common
ways	of
passing
parameters
should	be
used.

Yes

CPP_T032 Multiple
output	values
from	a
function
should	be
returned	as	a
struct	or
tuple.

Yes

CPP_T033 "consume"
parameters
declared	as	X

Yes

C
Checks

www.scitools.com Page	149/413

declared	as	X

&&	shall
always	be
moved	from.

CPP_T034 "forward"
parameters
declared	as	T
&&	shall
always	be
forwarded.

Yes

CPP_T035 "in"
parameters
for	"cheap	to
copy"	types
shall	be
passed	by
value.

Yes

CPP_T036 Output
parameters
shall	not	be
used.

Yes

CPP_T037 "in-out"
parameters
declared	as	T
&	shall	be
modified.

Yes

CPP_T038 Fixed	Width
Integers

Yes

CPP_T039 Non-
constant
operands	to
a	binary
bitwise
operator	shall
have	the
same
underlying
type

Yes

CPP_T040 User	defined
literals
operators
shall	only
perform

Yes

C
Checks

www.scitools.com Page	150/413

perform

conversion	of
passed
parameters

CPP_T041 A	binary
arithmetic
operator	and
a	bitwise
operator	shall
return	a
"prvalue"

Yes

CPP_T042 A	relational
operator	shall
return	a
boolean
value

Yes

CPP_T043 If
"operator[]"
is	to	be
overloaded
with	a	non-
const
version,
const	version
shall	also	be
implemented

Yes

CPP_T044 Undocument
ed	Use	of
Floating-
point
Arithmetic

Yes

CPP_T045 Undocument
ed	Use	of
Scaled-
integer	or
Fixed-point
Arithmetic

Yes

CPP_T046 Assigning
Object	to	an
Overlapping
Object

Yes

CPP_T047 Data	types
used	for

Yes

C
Checks

www.scitools.com Page	151/413

used	for

interfacing
CPP_T048 All	user-

defined
conversion
operators
shall	be
defined
explicit

Yes

CPP_T049 User-defined
conversion
operators
should	not	be
used

Yes

CPP_T050 Types	shall
be	explicitly
specified

Yes

CPP_T051 C-style
strings	shall
not	be	used

Yes

CPP_T052 String-to-
Number
Conversion
Handling

Yes

CPP_T053 A	type	used
as	a	template
argument
shall	provide
all	members
that	are	used
by	the
template

Yes

CPP_T054A An	array	or
container
shall	not	be
accessed
beyond	its
range	(Part
A)

Yes

CPP_T054B An	array	or
container
shall	not	be
accessed

Yes

C
Checks

www.scitools.com Page	152/413

accessed

beyond	its
range	Part	B

CPP_T055 A	value
should	not	be
retrieved
from	a
structure	or
union	with	a
different	type
than	with
which	it	was
stored

Yes

CPP_T056 Explicit	type
casting	shall
be	used
when
performing
calculations
with	a	mix	of
signed	and
unsigned
values.

Yes

CPP_T057 Actual
arguments
shall	be
explicitly
type	cast	to
the
appropriate
type

Yes

CPP_T058 Simple
integers	shall
be	used	to
test	and	set
booleans

Yes

CPP_T059 Width-
sensitive
types	should
be	typedef'd
and	placed	in
a	header	file

Yes

CPP_T060 Converting	a Yes

C
Checks

www.scitools.com Page	153/413

Converting	a

pointer	to
integer	or
integer	to
pointer

CPP_T061 All	Checks/
Language
Specific/C
and	C++/
Types/Use
Const
whenever
possible

Yes

CPP_U000 Digraphs
shall	not	be
used

Yes

CPP_U001 Discarded
return	values.

Yes

CPP_U002 Inline
Functions
have	more
than	X	LOC

Yes

CPP_U003 Unused
Parameters	in
Non-virtual
Functions

Yes

CPP_U004 Unused
Static
Globals

Yes

CPP_U005 A	project
should	not
contain
unused	tag
declarations

Yes

CPP_U006 A	project
shall	not
contain
unused	type
declarations

Yes

CPP_U007 Unused
Labels

Yes

CPP_U010 Unused
Entities

Yes

C
Checks

www.scitools.com Page	154/413

CPP_V000 Magic
Numbers

Yes

CPP_V001 One	Variable
per	Line

Yes

CPP_V002 Reference
Symbols
Spacing,	(&
*)

Yes

CPP_V003 Declare	each
variable	in	a
separate
declaration
statement

Yes

CPP_V004 A	project
shall	not
contain	non-
volatile	POD
variables
having	only
one	use.

Yes

CPP_V005 Types	or
externals
declared	at
the	function
level.

Yes

CPP_V006 A	variable
which	is	not
modified
shall	be
const
qualified

Yes

CPP_V007 Unused	Local
Variables

Yes

CPP_V008 Unused
Static	Global

Yes

CPP_V009 Using-
directives
shall	not	be
used.

Yes

CPP_V010 Variables
should	be
commented

Yes

C
Checks

www.scitools.com Page	155/413

CPP_V011 All	variables
shall	have	a
defined	value
before	they
are	used

Yes

CPP_V012 Explicit
Virtual

Yes

CPP_V013 There	shall
be	no	more
than	one
definition	of
each	virtual
function	on
each	path
through	the
inheritance
hierarchy

Yes

CPP_V014 A	virtual
function	shall
only	be
overridden
by	a	pure
virtual
function	if	it
is	itself
declared	as
pure	virtual

Yes

CPP_V015 There	shall
be	no	unused
parameters
(named	or
unnamed)	in
the	set	of
parameters
for	a	virtual
function	and
all	the
functions
that	override
it

Yes

CPP_V017 A	project
shall	not

Yes

C
Checks

www.scitools.com Page	156/413

shall	not

contain
instances	of
non-volatile
variables
being	given
values	that
are	not
subsequently
used

CPP_V018 Auto	Variable Yes
CPP_V019 Initializing

Variables
Without
Using
Braced-
Initialization

Yes

CPP_V020 Class
members
that	are	not
dependent
on	template
class
parameters
should	be
defined	in	a
separate
base	class

Yes

CPP_V021 Variables
should	not	be
altered	more
than	once	in
an
expression

Yes

CPP_V022 Variables
shall	not	be
implicitly
captured	in	a
lambda
expression

Yes

CPP_V023 Literal	values
shall	not	be
used	apart

Yes

C
Checks

www.scitools.com Page	157/413

used	apart

from	type
initialization,
otherwise
symbolic
names	shall
be	used
instead

CPP_V024 Variables	of
type	char
shall	be
explicitly
qualified	as
signed	or
unsigned
when	used	to
store
numbers

Yes

CPP_V025 Every
variable	shall
be	declared
with	a
specific	type

Yes

CPP_V026 Local
variables
shall	be
initialized
when
declared

Yes

CPP_V027 Globals	in
header	files
shall	be
ifdef'd

Yes

CPP_V028 Constants
should	be
declared	as
const	values
as	opposed
to	#define
directives.

Yes

CPP_V029 The
const_cast
operator

Yes

C
Checks

www.scitools.com Page	158/413

operator

should	be
used
exclusively
for	altering
the
constness
attribute	of	a
variable.

CPP_V030 The
dynamic_cas
t	operator
should	be
used
exclusively
for	casting
within	an
inheritance
hierarchy.

Yes

CPP_V031 The
static_cast
operator
should	be
used	for
routine	cast
operations
not	provided
by
const_cast
and
dynamic_cas
t.	

Yes

CPP_V032 Use	of	the
reinterpret_c
ast	operator
should	be
avoided

Yes

CPP_V033 Typedef'd
variables	in	a
class	shall	be
placed	in	an
include	file

Yes

CPP_V034 STL Yes

C
Checks

www.scitools.com Page	159/413

STL

containers
(vector,	list,
map,	etc.)
should	be
used	instead
of	C-style
arrays
whenever
possible.

CPP_V035 Objects	that
do	not	outlive
a	function
shall	have
automatic
storage
duration

Yes

CPP_V036 Static	data
member
initialization
should	be
placed	in	the
class	.cpp	file

Yes

CPP_V037 Initializer	lists
should	be
used	to
initialize
member
variables
over	direct
assignment.

Yes

CPP_V038 The	concept
of
information
hiding	should
be
implemented.

Yes

CPP_V039 Within	an
object,	most
instance
variables
should	be
accessed

Yes

C
Checks

www.scitools.com Page	160/413

accessed

directly.
Methods
should	be
used	to	set
variables
whose	values
are
determined
by	an
algorithm.

CPP_VF000 Every	class
that	contains
virtual
functions
shall	provide
a	virtual
destructor

Yes

CPP_VF001 Access	levels
should	not	be
mixed
(public,
protected,
private)	when
overriding
virtual
functions.

Yes

CPP_WARN_
ABSOLUTE_V
ALUE

Absolute
Value	Proper
Usage

Yes

CPP_WARN_
ABSTRACT_F
INAL_CLASS

Abstract
Classes
Should	Not
Be	Final	or
Sealed

Yes

CPP_WARN_
ABSTRACT_V
BASE_INIT

No	Useless
Init	for
Abstract
Virtual	Base

Yes

CPP_WARN_
ADDRESS_OF
_PACKED_M
EMBER

Do	Not	Take
the	Address
of	Packed
Members

Yes

C
Checks

www.scitools.com Page	161/413

CPP_WARN_
ADDRESS_OF
_TEMPORAR
Y

Do	Not	Take
the	Address
of	Temporary
Objects

Yes High

CPP_WARN_
AIX_COMPAT

IBM	AIX
Compatibility
with	Byte
Alignment

Yes

CPP_WARN_
ALIGN_MISM
ATCH

Match	Byte
Alignment	of
Arguments

Yes

CPP_WARN_
ALLOCA

Do	Not	Use
Certain
Allocation
Functions

Yes

CPP_WARN_
ALLOCA_WIT
H_ALIGN_ALI
GNOF

Correct
Usage	of
Second
Argument	of
Certain
Allocation
Functions

Yes

CPP_WARN_
ALWAYS_INLI
NE_COROUTI
NE

Always	Inline
Coroutine
Functions

Yes

CPP_WARN_
AMBIGUOUS
_DELETE

Ambiguous
Delete

Yes

CPP_WARN_
AMBIGUOUS
_ELLIPSIS

Ambiguous
Ellipsis

Yes

CPP_WARN_
AMBIGUOUS
_MACRO

Ambiguous
Macro

Yes

CPP_WARN_
AMBIGUOUS
_MEMBER_T
EMPLATE

Ambiguous
Member
Template

Yes

CPP_WARN_
AMBIGUOUS
REVERSED

Ambiguous
Reversed
Operator

Yes

C
Checks

www.scitools.com Page	162/413

REVERSED

OPERATOR
CPP_WARN_
ANALYZER_I
NCOMPATIBL
E_PLUGIN

Analyzer
Incompatible
Plugin

Yes

CPP_WARN_
ANON_ENU
M_ENUM_CO
NVERSION

Anon-Enum
Enum
Conversion

Yes

CPP_WARN_
ANONYMOU
S_PACK_PAR
ENS

Anonymous
Pack
Parentheses

Yes

CPP_WARN_
ARC_BRIDGE
_CASTS_DIS
ALLOWED_IN
_NONARC

ARC
(Automatic
Reference
Counting)
Bridge	Casts
Disallowed	in
Non-ARC

Yes

CPP_WARN_
ARC_MAYBE
REPEATED
USE_OF_WE
AK

ARC	Maybe
Repeated
Use	of	Weak

Yes

CPP_WARN_
ARC_RETAIN
_CYCLES

ARC	Retain
Cycles

Yes

CPP_WARN_
ARC_UNSAF
E_RETAINED
_ASSIGN

ARC	Unsafe
Retained
Assign

Yes

CPP_WARN_
ARGUMENT_
OUTSIDE_RA
NGE

Argument
Outside
Range

Yes

CPP_WARN_
ARGUMENT_
UNDEFINED_
BEHAVIOUR

Argument
Undefined
Behaviour

Yes

CPP_WARN_
ARRAY_BOU

Array	Bounds Yes High

C
Checks

www.scitools.com Page	163/413

ARRAY_BOU

NDS
CPP_WARN_
ARRAY_BOU
NDS_POINTE
R_ARITHMET
IC

Array	Bounds
Pointer
Arithmetic

Yes

CPP_WARN_
ARRAY_PARA
METER

Array
Parameter

Yes

CPP_WARN_
ASM_OPERA
ND_WIDTHS

Assembly
Operand
Widths

Yes

CPP_WARN_
ASSIGN_ENU
M

Assign	Enum Yes

CPP_WARN_
ASSUME

Discarded
Side	Effects
to	__assume
Function

Yes

CPP_WARN_
ATOMIC_AC
CESS

Atomic
Access

Yes

CPP_WARN_
ATOMIC_ALI
GNMENT

Atomic
Alignment

Yes

CPP_WARN_
ATOMIC_IMP
LICIT_SEQ_C
ST

Atomic
Implicitly
Sequentially-
Consistent

Yes

CPP_WARN_
ATOMIC_ME
MORY_ORDE
RING

Atomic
Memory
Ordering

Yes

CPP_WARN_
AUTO_DISAB
LE_VPTR_SA
NITIZER

Auto	Disable
Virtual
Pointer
Sanitizer

Yes

CPP_WARN_
AUTO_STOR
AGE_CLASS

Auto	Storage
Class

Yes

CPP_WARN_ Availability Yes High

C
Checks

www.scitools.com Page	164/413

CPP_WARN_

AVAILABILITY

Availability

Attribute
CPP_WARN_
AVR_RTLIB_L
INKING_QUIR
KS

AVR	RTLIB
(Real-Time
Library)
Linking
Quirks

Yes

CPP_WARN_
BACKEND_P
LUGIN

Backend
Plugin

Yes

CPP_WARN_
BACKSLASH
_NEWLINE_E
SCAPE

Backslash
Newline
Escape

Yes High

CPP_WARN_
BAD_FUNCTI
ON_CAST

Do	Not	Cast
from
Function	Call
of	One	Type
to	Another

Yes

CPP_WARN_
BIND_TO_TE
MPORARY_C
OPY

Bind	to
Temporary
Copy

Yes

CPP_WARN_
BINDING_IN_
CONDITION

Binding	in
Condition

Yes

CPP_WARN_
BIT_INT_EXT
ENSION

Bit	Int
Extension

Yes

CPP_WARN_
BITFIELD_CO
NSTANT_CO
NVERSION

Bitfield
Constant
Conversion

Yes High

CPP_WARN_
BITFIELD_EN
UM_CONVER
SION

Bitfield	Enum
Conversion

Yes

CPP_WARN_
BITFIELD_WI
DTH

Do	Not
Exceed	Bit-
Field	Width

Yes High

CPP_WARN_
BITWISE_CO
NDITIONAL_

Bitwise
Conditional
Parentheses

Yes

C
Checks

www.scitools.com Page	165/413

NDITIONAL_

PARENTHESE
S
CPP_WARN_
BITWISE_INS
TEAD_OF_LO
GICAL

Bitwise
Instead	of
Logical

Yes

CPP_WARN_
BITWISE_OP
_PARENTHES
ES

Bitwise
Operator
Parentheses

Yes

CPP_WARN_
BOOL_CONV
ERSION

Bool
Conversion

Yes High

CPP_WARN_
BOOL_OPER
ATION

Bool
Operation

Yes

CPP_WARN_
BRACED_SC
ALAR_INIT

Braced
Scalar	Init

Yes

CPP_WARN_
BRANCH_PR
OTECTION

Branch
Protection

Yes

CPP_WARN_
BUILTIN_ASS
UME_ALIGNE
D_ALIGNME
NT

Builtin
Assume
Aligned
Alignment

Yes

CPP_WARN_
BUILTIN_MA
CRO_REDEFI
NED

Builtin	Macro
Redefined

Yes High

CPP_WARN_
BUILTIN_ME
MCPY_CHK_
SIZE

Builtin
Memcpy
Check	Size

Yes High

CPP_WARN_
BUILTIN_REQ
UIRES_HEAD
ER

Builtin
Requires
Header

Yes

CPP_WARN_
C2X_EXTEN
SIONS

C2X
Extensions

Yes

C
Checks

www.scitools.com Page	166/413

CPP_WARN_
C11_EXTENSI
ONS

C11
Extensions

Yes

CPP_WARN_
C99_COMPA
T

C99
Compatibility

Yes

CPP_WARN_
C99_DESIGN
ATOR

C99
Designator

Yes

CPP_WARN_
C99_EXTEN
SIONS

C99
Extensions

Yes

CPP_WARN_
CALL_TO_PU
RE_VIRTUAL
_FROM_CTO
R_DTOR

Call	to	Pure
Virtual	from
Constructor
or	Destructor

Yes High

CPP_WARN_
CALLED_ON
CE_PARAME
TER

Called	once
Parameter

Yes

CPP_WARN_
CAST_ALIGN

Cast	Align Yes

CPP_WARN_
CAST_CALLI
NG_CONVEN
TION

Cast	Calling
Convention

Yes

CPP_WARN_
CAST_FUNC
TION_TYPE

Cast
Function
Type

Yes

CPP_WARN_
CAST_QUAL

Cast
Qualifiers

Yes

CPP_WARN_
CAST_QUAL
_UNRELATED

Cast
Qualifiers
Unrelated

Yes High

CPP_WARN_
CHAR_SUBS
CRIPTS

Char
Subscripts

Yes

CPP_WARN_
CLANG_CL_
PCH

Clang-CL
Precompiled
Headers

Yes

C
Checks

www.scitools.com Page	167/413

CPP_WARN_
CLASS_CON
VERSION

Class
Conversion

Yes High

CPP_WARN_
CLASS_VARA
RGS

Class
Variadic
Arguments

Yes

CPP_WARN_
CMSE_UNIO
N_LEAK

CMSE
(Cortex-M
Support	for
Security
Extension)
Union	Leak

Yes

CPP_WARN_
COMMA

Comma
Operator
Misuse

Yes

CPP_WARN_
COMMENT

Comment
Misuse

Yes

CPP_WARN_
COMPARE_DI
STINCT_POI
NTER_TYPES

Compare
Distinct
Pointer	Types

Yes High

CPP_WARN_
COMPLEX_C
OMPONENT_
INIT

Complex
Component
Init

Yes

CPP_WARN_
COMPOUND
_TOKEN_SPL
IT_BY_MACR
O

Compound
Token	Split
by	Macro

Yes High

CPP_WARN_
COMPOUND
_TOKEN_SPL
IT_BY_SPACE

Compound
Token	Split
by	Space

Yes

CPP_WARN_
CONDITIONA
L_TYPE_MIS
MATCH

Conditional
Type
Mismatch

Yes High

CPP_WARN_
CONDITIONA
L_UNINITIALI
ZED

Conditional
Uninitialized

Yes

C
Checks

www.scitools.com Page	168/413

CPP_WARN_
CONSTANT_
CONVERSIO
N

Constant
Conversion

Yes High

CPP_WARN_
CONSTANT_
EVALUATED

Constant
Evaluated

Yes

CPP_WARN_
CONSTANT_
LOGICAL_OP
ERAND

Constant
Logical
Operand

Yes High

CPP_WARN_
CONSTEXPR
_NOT_CONS
T

Constexpr
Not	Const

Yes

CPP_WARN_
CONSUMED

Consumable
Attribute

Yes

CPP_WARN_
CONVERSIO
N

Type
Conversion

Yes

CPP_WARN_
COROUTINE

Coroutine
Return	Type

Yes

CPP_WARN_
COROUTINE
_MISSING_U
NHANDLED_
EXCEPTION

Coroutine
Missing
Unhandled
Exception

Yes

CPP_WARN_
COVERED_S
WITCH_DEFA
ULT

Covered
Switch
Default

Yes

CPP_WARN_
CPP_COMPA
T

C++
Compatibility

Yes

CPP_WARN_
CPP2B_EXTE
NSIONS

C++2B
Extensions

Yes

CPP_WARN_
CPP11_COMP
AT

C++11
Compatibility

Yes

CPP_WARN_ C++11 Yes High

C
Checks

www.scitools.com Page	169/413

CPP_WARN_

CPP11_COMP
AT_DEPRECA
TED_WRITAB
LE_STRINGS

C++11

Compatibility
Deprecated
Writable
Strings

CPP_WARN_
CPP11_COMP
AT_RESERVE
D_USER_DEF
INED_LITERA
L

C++11
Compatibility
Reserved
User	Defined
Literal

Yes

CPP_WARN_
CPP11_EXTE
NSIONS

C++11
Extensions

Yes

CPP_WARN_
CPP11_EXTR
A_SEMI

C++11	Extra
Semicolon

Yes

CPP_WARN_
CPP11_INLIN
E_NAMESPA
CE

C++11	Inline
Namespace

Yes

CPP_WARN_
CPP11_LONG
_LONG

C++11	Long
Long

Yes

CPP_WARN_
CPP11_NARR
OWING

C++11
Narrowing

Yes

CPP_WARN_
CPP14_ATTRI
BUTE_EXTE
NSIONS

C++14
Attribute
Extensions

Yes

CPP_WARN_
CPP14_BINA
RY_LITERAL

C++14	Binary
Literal

Yes

CPP_WARN_
CPP14_EXTE
NSIONS

C++14
Extensions

Yes

CPP_WARN_
CPP17_ATTRI
BUTE_EXTE
NSIONS

C++17
Attribute
Extensions

Yes

CPP_WARN_
CPP17_COM

C++17
Compatibility

Yes

C
Checks

www.scitools.com Page	170/413

CPP17_COM

PAT_MANGLI
NG

Compatibility

Mangling

CPP_WARN_
CPP17_EXTE
NSIONS

C++17
Extensions

Yes

CPP_WARN_
CPP20_ATTR
IBUTE_EXTE
NSIONS

C++20
Attribute
Extensions

Yes

CPP_WARN_
CPP20_COM
PAT

C++20
Compatibility

Yes

CPP_WARN_
CPP20_DESI
GNATOR

C++20
Designator

Yes

CPP_WARN_
CPP20_EXTE
NSIONS

C++20
Extensions

Yes

CPP_WARN_
CPP98_COM
PAT

C++98
Compatibility

Yes

CPP_WARN_
CPP98_COM
PAT_BIND_T
O_TEMPORA
RY_COPY

C++98
Compatibility
Bind	to
Temporary
Copy

Yes

CPP_WARN_
CPP98_COM
PAT_EXTRA_
SEMI

C++98
Compatibility
Extra
Semicolon

Yes

CPP_WARN_
CPP98_COM
PAT_LOCAL_
TYPE_TEMPL
ATE_ARGS

C++98
Compatibility
Local	Type
Template
Args

Yes

CPP_WARN_
CPP98_COM
PAT_PEDANT
IC

C++98
Compatibility
Pedantic

Yes

CPP_WARN_
CPP98_COM
PAT_UNNAM

C++98
Compatibility
Unnamed

Yes

C
Checks

www.scitools.com Page	171/413

PAT_UNNAM

ED_TYPE_TE
MPLATE_AR
GS

Unnamed

Type
Template
Args

CPP_WARN_
CPP98_CPP1
1_COMPAT_B
INARY_LITER
AL

C++98	C++11
Compatibility
Binary	Literal

Yes

CPP_WARN_
CTAD_MAYB
E_UNSUPPO
RTED

CTAD	(Class
Template
Argument
Deduction)
Maybe
Unsupported

Yes

CPP_WARN_
CXX_ATTRIB
UTE_EXTENS
ION

C++	Attribute
Extension

Yes

CPP_WARN_
DANGLING

Dangling
Pointers

Yes High

CPP_WARN_
DANGLING_E
LSE

Dangling	ElseYes

CPP_WARN_
DANGLING_F
IELD

Dangling
Field

Yes High

CPP_WARN_
DANGLING_
GSL

Dangling
Pointers
Found	by
Guidelines
Support
Library

Yes High

CPP_WARN_
DANGLING_I
NITIALIZER_
LIST

Dangling
Initializer	List

Yes High

CPP_WARN_
DARWIN_SD
K_SETTINGS

Darwin	SDK
Settings

Yes

CPP_WARN_
DATE_TIME

Date	and
Time	Macros

Yes

CPP_WARN_ Dealloc	in Yes

C
Checks

www.scitools.com Page	172/413

CPP_WARN_

DEALLOC_IN
_CATEGORY

Dealloc	in

Category

CPP_WARN_
DEBUG_COM
PRESSION_U
NAVAILABLE

Debug
Compression
Unavailable

Yes

CPP_WARN_
DECLARATIO
N_AFTER_ST
ATEMENT

Declaration
After
Statement

Yes

CPP_WARN_
DEFAULTED_
FUNCTION_
DELETED

Defaulted
Function
Deleted

Yes High

CPP_WARN_
DELEGATING
_CTOR_CYCL
ES

Delegating
Constructor
Cycles

Yes High

CPP_WARN_
DELETE_ABS
TRACT_NON
_VIRTUAL_D
TOR

Delete
Abstract
Non-Virtual
Destructor

Yes High

CPP_WARN_
DELETE_INC
OMPLETE

Delete
Incomplete

Yes High

CPP_WARN_
DELETE_NO
N_ABSTRAC
T_NON_VIRT
UAL_DTOR

Delete	Non-
Abstract
Non-Virtual
Destructor

Yes

CPP_WARN_
DEPRECATE
D

Deprecated Yes

CPP_WARN_
DEPRECATED
_ALTIVEC_S
RC_COMPAT

Deprecated
AltiVec
Instruction
Set	Source
Compatibility

Yes

CPP_WARN_
DEPRECATED
_ANON_ENU

Deprecated
Anon-Enum,
Enum

Yes

C
Checks

www.scitools.com Page	173/413

_ANON_ENU

M_ENUM_CO
NVERSION

Enum

Conversion

CPP_WARN_
DEPRECATED
_ARRAY_CO
MPARE

Deprecated
Array
Compare

Yes

CPP_WARN_
DEPRECATED
_ATTRIBUTE
S

Deprecated
Attributes

Yes

CPP_WARN_
DEPRECATED
_BUILTINS

Deprecated
Builtins

Yes High

CPP_WARN_
DEPRECATED
_COMMA_SU
BSCRIPT

Deprecated
Comma
Subscript

Yes

CPP_WARN_
DEPRECATED
_COPY

Deprecated
Copy

Yes

CPP_WARN_
DEPRECATED
_COPY_WITH
_DTOR

Deprecated
Copy	with
Destructor

Yes

CPP_WARN_
DEPRECATED
_COPY_WITH
_USER_PRO
VIDED_COPY

Deprecated
Copy	with
User
Provided
Copy

Yes

CPP_WARN_
DEPRECATED
_COPY_WITH
_USER_PRO
VIDED_DTOR

Deprecated
Copy	with
User
Provided
Destructor

Yes

CPP_WARN_
DEPRECATED
_COROUTINE

Deprecated
Coroutine

Yes

CPP_WARN_
DEPRECATED
_DECLARATI
ONS

Deprecated
Declarations

Yes High

CPP_WARN_ Deprecated Yes

C
Checks

www.scitools.com Page	174/413

CPP_WARN_

DEPRECATED
_DYNAMIC_E
XCEPTION_S
PEC

Deprecated

Dynamic
Exception
Spec

CPP_WARN_
DEPRECATED
_EXPERIMEN
TAL_COROU
TINE

Deprecated
Experimental
Coroutine

Yes

CPP_WARN_
DEPRECATED
_IMPLEMENT
ATIONS

Deprecated
Implementati
ons

Yes

CPP_WARN_
DEPRECATED
_INCREMENT
_BOOL

Deprecated
Increment
Bool

Yes High

CPP_WARN_
DEPRECATED
_NON_PROT
OTYPE

Deprecated
Non-
Prototype

Yes High

CPP_WARN_
DEPRECATED
_REGISTER

Deprecated
Register

Yes High

CPP_WARN_
DEPRECATED
_STATIC_AN
ALYZER_FLA
G

Deprecated
Static
Analyzer	Flag

Yes

CPP_WARN_
DEPRECATED
_THIS_CAPT
URE

Deprecated
This	Capture

Yes

CPP_WARN_
DEPRECATED
_TYPE

Deprecated
Type

Yes

CPP_WARN_
DEPRECATED
_VOLATILE

Deprecated
Volatile

Yes High

CPP_WARN_
DISABLED_M
ACRO_EXPA

Disabled
Macro
Expansion

Yes

C
Checks

www.scitools.com Page	175/413

ACRO_EXPA

NSION
CPP_WARN_
DIVISION_BY
_ZERO

Division	by
Zero

Yes High

CPP_WARN_
DLL_ATTRIB
UTE_ON_RE
DECLARATIO
N

DLL	Attribute
on	Re-
Declaration

Yes

CPP_WARN_
DLLEXPORT_
EXPLICIT_IN
STANTIATIO
N_DECL

DLLexport
Explicit
Instantiation
Decl

Yes

CPP_WARN_
DLLIMPORT_
STATIC_FIEL
D_DEF

DLLimport
Static	Field
Def

Yes

CPP_WARN_
DOCUMENTA
TION

Documentati
on	Warnings

Yes

CPP_WARN_
DOCUMENTA
TION_DEPRE
CATED_SYN
C

Documentati
on
Deprecated
Sync

Yes

CPP_WARN_
DOCUMENTA
TION_HTML

Documentati
on	Html

Yes

CPP_WARN_
DOCUMENTA
TION_PEDAN
TIC

Documentati
on	Pedantic

Yes

CPP_WARN_
DOCUMENTA
TION_UNKN
OWN_COMM
AND

Documentati
on	Unknown
Command

Yes

CPP_WARN_
DOLLAR_IN_I
DENTIFIER_E
XTENSION

Dollar	in
Identifier
Extension

Yes

C
Checks

www.scitools.com Page	176/413

CPP_WARN_
DOUBLE_PR
OMOTION

Double
Promotion

Yes

CPP_WARN_
DTOR_NAME

Destructor
Name

Yes

CPP_WARN_
DTOR_TYPE
DEF

Destructor
Typedef

Yes

CPP_WARN_
DUPLICATE_
DECL_SPECI
FIER

Duplicate
Decl
Specifier

Yes

CPP_WARN_
DUPLICATE_
ENUM

Duplicate
Enum

Yes

CPP_WARN_
DUPLICATE_
METHOD_AR
G

Duplicate
Method	Arg

Yes

CPP_WARN_
DUPLICATE_
METHOD_MA
TCH

Duplicate
Method
Match

Yes

CPP_WARN_
DUPLICATE_
PROTOCOL

Duplicate
Protocol

Yes

CPP_WARN_
DYNAMIC_CL
ASS_MEMAC
CESS

Dynamic
Class
Memory
Access

Yes High

CPP_WARN_
DYNAMIC_EX
CEPTION_SP
EC

Dynamic
Exception
Spec

Yes

CPP_WARN_
ELABORATED
_ENUM_BAS
E

Elaborated
Enum	Base

Yes

CPP_WARN_
ELABORATED
_ENUM_CLA
SS

Elaborated
Enum	Class

Yes

C
Checks

www.scitools.com Page	177/413

CPP_WARN_
EMBEDDED_
DIRECTIVE

Embedded
Directive

Yes

CPP_WARN_
EMPTY_BOD
Y

Control	Loop
Shall	Not
Have	Empty
Body

Yes

CPP_WARN_
EMPTY_DEC
OMPOSITION

Decompositi
on	Group
Shall	Not	Be
Empty

Yes

CPP_WARN_
EMPTY_INIT_
STMT

No	Empty
Initialization
Statements

Yes

CPP_WARN_
EMPTY_TRA
NSLATION_U
NIT

Empty
Translation
Unit

Yes

CPP_WARN_
ENUM_COMP
ARE

Enum
Compare

Yes High

CPP_WARN_
ENUM_COMP
ARE_CONDIT
IONAL

Enum
Compare
Conditional

Yes

CPP_WARN_
ENUM_COMP
ARE_SWITCH

Enum
Compare
Switch

Yes High

CPP_WARN_
ENUM_CONV
ERSION

Enum
Conversion

Yes

CPP_WARN_
ENUM_ENU
M_CONVERS
ION

Enum	Enum
Conversion

Yes

CPP_WARN_
ENUM_FLOA
T_CONVERSI
ON

Enum	Float
Conversion

Yes

CPP_WARN_
ENUM_TOO_
LARGE

Enum	Too
Large

Yes

C
Checks

www.scitools.com Page	178/413

CPP_WARN_
EXCEPTIONS

Exceptions Yes High

CPP_WARN_
EXCESS_INIT
IALIZERS

Excess
Initializers

Yes

CPP_WARN_
EXIT_TIME_D
ESTRUCTOR
S

Exit	Time
Destructors

Yes

CPP_WARN_
EXPANSION_
TO_DEFINED

Expansion	to
Defined

Yes

CPP_WARN_
EXPORT_UN
NAMED

Export
Unnamed

Yes

CPP_WARN_
EXPORT_USI
NG_DIRECTI
VE

Export	Using
Directive

Yes

CPP_WARN_
EXTERN_C_C
OMPAT

Extern	C
Compatibility

Yes High

CPP_WARN_
EXTERN_INIT
IALIZER

Extern
Initializer

Yes High

CPP_WARN_
EXTRA

Extra
Warnings

Yes

CPP_WARN_
EXTRA_QUA
LIFICATION

Extra
Qualification

Yes High

CPP_WARN_
EXTRA_SEMI

Extra
Semicolon

Yes

CPP_WARN_
EXTRA_SEMI
_STMT

Extra
Semicolon	in
Empty
Expression
Statement

Yes

CPP_WARN_
EXTRA_TOKE
NS

Extra	Tokens Yes

CPP_WARN_ Final Yes

C
Checks

www.scitools.com Page	179/413

CPP_WARN_

FINAL_DTOR
_NON_FINAL
_CLASS

Final

Destructor
Non-Final
Class

CPP_WARN_
FINAL_MACR
O

Final	Macros
Should	Not
Be	Redefined

Yes

CPP_WARN_
FIXED_ENUM
_EXTENSION

Fixed	Enum
Extension

Yes

CPP_WARN_
FIXED_POINT
_OVERFLOW

Fixed	Point
Overflow

Yes High

CPP_WARN_
FLAG_ENUM

Flag	Enum Yes High

CPP_WARN_
FLEXIBLE_AR
RAY_EXTENS
IONS

Flexible	Array
Extensions

Yes

CPP_WARN_
FLOAT_CON
VERSION

Float
Conversion

Yes

CPP_WARN_
FLOAT_EQUA
L

Float	Equal Yes

CPP_WARN_
FLOAT_OVER
FLOW_CONV
ERSION

Float
Overflow
Conversion

Yes

CPP_WARN_
FLOAT_ZERO
_CONVERSIO
N

Float	Zero
Conversion

Yes

CPP_WARN_
FOR_LOOP_
ANALYSIS

For	Loop
Analysis

Yes

CPP_WARN_
FORMAT

Format	StringYes High

CPP_WARN_
FORMAT_EX
TRA_ARGS

Format	Extra
Args

Yes High

CPP_WARN_ Format Yes High

C
Checks

www.scitools.com Page	180/413

CPP_WARN_

FORMAT_INS
UFFICIENT_A
RGS

Format

Insufficient
Args

CPP_WARN_
FORMAT_INV
ALID_SPECIF
IER

Format
Invalid
Specifier

Yes High

CPP_WARN_
FORMAT_NO
N_ISO

Format	Non-
ISO

Yes

CPP_WARN_
FORMAT_NO
NLITERAL

Format	Non-
Literal

Yes

CPP_WARN_
FORMAT_PE
DANTIC

Format
Pedantic

Yes

CPP_WARN_
FORMAT_SE
CURITY

Format
Security

Yes High

CPP_WARN_
FORMAT_TY
PE_CONFUSI
ON

Format	Type
Confusion

Yes

CPP_WARN_
FORMAT_ZE
RO_LENGTH

Format	Zero
Length

Yes High

CPP_WARN_
FORTIFY_SO
URCE

Fortify
Source

Yes High

CPP_WARN_
FOUR_CHAR
_CONSTANT
S

Four	Char
Constants

Yes

CPP_WARN_
FRAME_ADD
RESS

Frame
Address

Yes

CPP_WARN_
FREE_NONH
EAP_OBJECT

Free	Non-
Heap	Object

Yes High

CPP_WARN_
FUNCTION_

Function
Multi-Version

Yes

C
Checks

www.scitools.com Page	181/413

FUNCTION_

MULTIVERSI
ON
CPP_WARN_
FUSE_LD_PA
TH

Fuse	LD	Path Yes

CPP_WARN_
GCC_COMPA
T

GCC
Compatibility

Yes

CPP_WARN_
GLOBAL_CO
NSTRUCTOR
S

Global
Constructors

Yes

CPP_WARN_
GLOBAL_ISE
L

GlobalISel
(Global
Instruction
Selection)
Framework

Yes

CPP_WARN_
GNU_ALIGN
OF_EXPRESS
ION

GNU	Alignof
Expression

Yes

CPP_WARN_
GNU_ANONY
MOUS_STRU
CT

GNU
Anonymous
Struct

Yes

CPP_WARN_
GNU_ARRAY
_MEMBER_P
AREN_INIT

GNU	Array
Member
Parentheses
Init

Yes

CPP_WARN_
GNU_AUTO_
TYPE

GNU	Auto
Type

Yes

CPP_WARN_
GNU_BINARY
_LITERAL

GNU	Binary
Literal

Yes

CPP_WARN_
GNU_CASE_
RANGE

GNU	Case
Range

Yes

CPP_WARN_
GNU_COMPL
EX_INTEGER

GNU
Complex
Integer

Yes

C
Checks

www.scitools.com Page	182/413

CPP_WARN_
GNU_COMP
OUND_LITER
AL_INITIALIZ
ER

GNU
Compound
Literal
Initializer

Yes

CPP_WARN_
GNU_CONDI
TIONAL_OMI
TTED_OPERA
ND

GNU
Conditional
Omitted
Operand

Yes

CPP_WARN_
GNU_DESIG
NATOR

GNU
Designator

Yes

CPP_WARN_
GNU_EMPTY
_INITIALIZER

GNU	Empty
Initializer

Yes

CPP_WARN_
GNU_EMPTY
_STRUCT

GNU	Empty
Struct

Yes

CPP_WARN_
GNU_FLEXIB
LE_ARRAY_I
NITIALIZER

GNU	Flexible
Array
Initializer

Yes

CPP_WARN_
GNU_FLEXIB
LE_ARRAY_U
NION_MEMB
ER

GNU	Flexible
Array	Union
Member

Yes

CPP_WARN_
GNU_FOLDI
NG_CONSTA
NT

GNU	Folding
Constant

Yes

CPP_WARN_
GNU_IMAGIN
ARY_CONST
ANT

GNU
Imaginary
Constant

Yes

CPP_WARN_
GNU_INCLU
DE_NEXT

GNU	Include
Next

Yes

CPP_WARN_
GNU_INLINE
_CPP_WITHO

GNU	Inline
Cpp	Without
Extern

Yes

C
Checks

www.scitools.com Page	183/413

_CPP_WITHO

UT_EXTERN
CPP_WARN_
GNU_LABEL
_AS_VALUE

GNU	Label	as
Value

Yes

CPP_WARN_
GNU_LINE_M
ARKER

GNU	Line
Marker

Yes

CPP_WARN_
GNU_NULL_
POINTER_AR
ITHMETIC

GNU	Null
Pointer
Arithmetic

Yes

CPP_WARN_
GNU_POINT
ER_ARITH

GNU	Pointer
Arithmetic

Yes

CPP_WARN_
GNU_REDEC
LARED_ENU
M

GNU	Re-
Declared
Enum

Yes

CPP_WARN_
GNU_STATE
MENT_EXPR
ESSION

GNU
Statement
Expression

Yes

CPP_WARN_
GNU_STATE
MENT_EXPR
ESSION_FRO
M_MACRO_E
XPANSION

GNU
Statement
Expression
from	Macro
Expansion

Yes

CPP_WARN_
GNU_STATIC
_FLOAT_INIT

GNU	Static
Float	Init

Yes

CPP_WARN_
GNU_STRIN
G_LITERAL_
OPERATOR_T
EMPLATE

GNU	String
Literal
Operator
Template

Yes

CPP_WARN_
GNU_UNION
_CAST

GNU	Union
Cast

Yes

CPP_WARN_
GNU_VARIAB
LE_SIZED_TY

GNU	Variable
Sized	Type
Not	at	End

Yes

C
Checks

www.scitools.com Page	184/413

LE_SIZED_TY

PE_NOT_AT_
END
CPP_WARN_
GNU_ZERO_
LINE_DIRECT
IVE

GNU	Zero
Line	Directive

Yes

CPP_WARN_
GNU_ZERO_
VARIADIC_M
ACRO_ARGU
MENTS

GNU	Zero
Variadic
Macro
Arguments

Yes

CPP_WARN_
HEADER_GU
ARD

Header
Guard

Yes High

CPP_WARN_
HEADER_HY
GIENE

Header
Hygiene

Yes

CPP_WARN_I
DIOMATIC_P
ARENTHESE
S

Idiomatic
Parentheses

Yes

CPP_WARN_I
GNORED_AT
TRIBUTES

Ignored
Attributes

Yes High

CPP_WARN_I
GNORED_AV
AILABILITY_
WITHOUT_S
DK_SETTING
S

Ignored
Availability
Without	Sdk
Settings

Yes

CPP_WARN_I
GNORED_OP
TIMIZATION_
ARGUMENT

Ignored
Optimization
Argument

Yes

CPP_WARN_I
GNORED_PR
AGMA_INTRI
NSIC

Ignored
Pragma
Intrinsic

Yes

CPP_WARN_I
GNORED_PR
AGMAS

Ignored
Pragmas

Yes

CPP_WARN_I Ignored Yes High

C
Checks

www.scitools.com Page	185/413

CPP_WARN_I

GNORED_RE
FERENCE_Q
UALIFIERS

Ignored

Reference
Qualifiers

CPP_WARN_I
MPLICIT_CO
NST_INT_FL
OAT_CONVE
RSION

Implicit	Const
Int	Float
Conversion

Yes High

CPP_WARN_I
MPLICIT_CO
NVERSION_F
LOATING_PO
INT_TO_BOO
L

Implicit
Conversion
Floating	Point
to	Bool

Yes High

CPP_WARN_I
MPLICIT_EXC
EPTION_SPE
C_MISMATC
H

Implicit
Exception
Spec
Mismatch

Yes High

CPP_WARN_I
MPLICIT_FAL
LTHROUGH

Implicit
Fallthrough

Yes

CPP_WARN_I
MPLICIT_FAL
LTHROUGH_
PER_FUNCTI
ON

Implicit
Fallthrough
Per	Function

Yes

CPP_WARN_I
MPLICIT_FIX
ED_POINT_C
ONVERSION

Implicit	Fixed
Point
Conversion

Yes High

CPP_WARN_I
MPLICIT_FLO
AT_CONVER
SION

Implicit	Float
Conversion

Yes

CPP_WARN_I
MPLICIT_FU
NCTION_DE
CLARATION

Implicit
Function
Declaration

Yes

CPP_WARN_I
MPLICIT_INT

Implicit	Int Yes

CPP_WARN_I Implicit	Int Yes

C
Checks

www.scitools.com Page	186/413

CPP_WARN_I

MPLICIT_INT
_CONVERSIO
N

Implicit	Int

Conversion

CPP_WARN_I
MPLICIT_INT
_FLOAT_CON
VERSION

Implicit	Int
Float
Conversion

Yes

CPP_WARN_I
MPLICIT_RET
AIN_SELF

Implicit
Retain	Self

Yes

CPP_WARN_I
MPLICITLY_U
NSIGNED_LI
TERAL

Implicitly
Unsigned
Literal

Yes High

CPP_WARN_I
MPORT_PRE
PROCESSOR
DIRECTIVE
PEDANTIC

Import
Preprocessor
Directive
Pedantic

Yes

CPP_WARN_I
NACCESSIBL
E_BASE

Inaccessible
Base

Yes High

CPP_WARN_I
NCLUDE_NE
XT_ABSOLU
TE_PATH

Include	Next
Absolute
Path

Yes

CPP_WARN_I
NCLUDE_NE
XT_OUTSIDE
_HEADER

Include	Next
Outside
Header

Yes

CPP_WARN_I
NCOMPATIBL
E_EXCEPTIO
N_SPEC

Incompatible
Exception
Spec

Yes High

CPP_WARN_I
NCOMPATIBL
E_FUNCTION
_POINTER_T
YPES

Incompatible
Function
Pointer	Types

Yes

CPP_WARN_I
NCOMPATIBL
E_LIBRARY_

Incompatible
Library
Redeclaratio

Yes High

C
Checks

www.scitools.com Page	187/413

E_LIBRARY_

REDECLARAT
ION

Redeclaratio

n

CPP_WARN_I
NCOMPATIBL
E_MS_STRU
CT

Incompatible
Microsoft
Struct

Yes

CPP_WARN_I
NCOMPATIBL
E_POINTER_
TYPES

Incompatible
Pointer	Types

Yes High

CPP_WARN_I
NCOMPATIBL
E_POINTER_
TYPES_DISC
ARDS_QUALI
FIERS

Incompatible
Pointer	Types
Discards
Qualifiers

Yes High

CPP_WARN_I
NCOMPATIBL
E_SYSROOT

Incompatible
Sysroot

Yes

CPP_WARN_I
NCOMPLETE
_IMPLEMENT
ATION

Incomplete
Implementati
on

Yes

CPP_WARN_I
NCOMPLETE
_SETJMP_DE
CLARATION

Incomplete
Setjmp
Declaration

Yes

CPP_WARN_I
NCONSISTE
NT_DLLIMPO
RT

Inconsistent
DLLimport

Yes

CPP_WARN_I
NCONSISTE
NT_MISSING
_DESTRUCT
OR_OVERRID
E

Inconsistent
Missing
Destructor
Override

Yes

CPP_WARN_I
NCONSISTE
NT_MISSING
_OVERRIDE

Inconsistent
Missing
Override

Yes High

CPP_WARN_I Increment Yes High

C
Checks

www.scitools.com Page	188/413

CPP_WARN_I

NCREMENT_
BOOL

Increment

Bool

CPP_WARN_I
NFINITE_REC
URSION

Infinite
Recursion

Yes

CPP_WARN_I
NITIALIZER_
OVERRIDES

Initializer
Overrides

Yes

CPP_WARN_I
NJECTED_CL
ASS_NAME

Injected
Class	Name

Yes High

CPP_WARN_I
NLINE_ASM

Inline
Assembly

Yes

CPP_WARN_I
NLINE_NAME
SPACE_REOP
ENED_NONI
NLINE

Inline
Namespace
Reopened
Non-Inline

Yes High

CPP_WARN_I
NLINE_NEW_
DELETE

Inline	New
Delete

Yes

CPP_WARN_I
NSTANTIATI
ON_AFTER_S
PECIALIZATI
ON

Instantiation
After
Specializatio
n

Yes High

CPP_WARN_I
NT_CONVER
SION

Int
Conversion

Yes

CPP_WARN_I
NT_IN_BOOL
_CONTEXT

Int	in	Bool
Context

Yes

CPP_WARN_I
NT_TO_POIN
TER_CAST

Int	to	Pointer
Cast

Yes High

CPP_WARN_I
NT_TO_VOID
_POINTER_C
AST

Int	to	Void
Pointer	Cast

Yes High

CPP_WARN_I
NTEGER_OV

Integer
Overflow

Yes High

C
Checks

www.scitools.com Page	189/413

NTEGER_OV

ERFLOW
CPP_WARN_I
NTERRUPT_S
ERVICE_ROU
TINE

Interrupt
Service
Routine

Yes

CPP_WARN_I
NVALID_COM
MAND_LINE_
ARGUMENT

Invalid
Command
Line
Argument

Yes

CPP_WARN_I
NVALID_CON
STEXPR

Invalid
Constexpr

Yes

CPP_WARN_I
NVALID_IBO
UTLET

Invalid
IBOutletColle
ction
(Interface
Builder
Outlet
Collection)

Yes

CPP_WARN_I
NVALID_INITI
ALIZER_FRO
M_SYSTEM_
HEADER

Invalid
Initializer
from	System
Header

Yes

CPP_WARN_I
NVALID_IOS_
DEPLOYMEN
T_TARGET

Invalid	iOS
Deployment
Target

Yes

CPP_WARN_I
NVALID_NO_
BUILTIN_NA
MES

Invalid	No
Builtin	Names

Yes High

CPP_WARN_I
NVALID_NOR
ETURN

Invalid
Noreturn
Attribute

Yes High

CPP_WARN_I
NVALID_OFF
SETOF

Invalid
Offsetof

Yes High

CPP_WARN_I
NVALID_OR_
NONEXISTEN
T_DIRECTOR

Invalid	or
Nonexistent
Directory

Yes

C
Checks

www.scitools.com Page	190/413

T_DIRECTOR

Y
CPP_WARN_I
NVALID_PAR
TIAL_SPECIA
LIZATION

Invalid	Partial
Specializatio
n

Yes

CPP_WARN_I
NVALID_PP_T
OKEN

Invalid
Preprocessor
Token

Yes High

CPP_WARN_I
NVALID_SOU
RCE_ENCODI
NG

Invalid
Source
Encoding

Yes

CPP_WARN_I
NVALID_TOK
EN_PASTE

Invalid	Token
Paste

Yes

CPP_WARN_I
NVALID_UTF
8

Invalid	UTF-8Yes

CPP_WARN_
JUMP_SEH_F
INALLY

Jump	SEH
(Structured
Exception
Handling)
Finally

Yes

CPP_WARN_
KEYWORD_C
OMPAT

Keyword
Compatibility

Yes

CPP_WARN_
KEYWORD_M
ACRO

Keyword
Macro

Yes

CPP_WARN_
KNR_PROMO
TED_PARAM
ETER

K&R
Promoted
Parameter

Yes

CPP_WARN_
LANGUAGE_
EXTENSION_
TOKEN

Language
Extension
Token

Yes

CPP_WARN_
LARGE_BY_V
ALUE_COPY

Large	by
Value	Copy

Yes High

CPP_WARN_ Linker Yes

C
Checks

www.scitools.com Page	191/413

CPP_WARN_

LINKER_WAR
NINGS

Linker

Warnings

CPP_WARN_
LITERAL_CO
NVERSION

Literal
Conversion

Yes High

CPP_WARN_
LITERAL_RA
NGE

Literal	Range Yes High

CPP_WARN_
LOCAL_TYPE
TEMPLATE
ARGS

Local	Type
Template
Args

Yes

CPP_WARN_
LOGICAL_NO
T_PARENTHE
SES

Logical	Not
Parentheses

Yes High

CPP_WARN_
LOGICAL_OP
_PARENTHES
ES

Logical
Operator
Parentheses

Yes

CPP_WARN_
LONG_LONG

Long	Long Yes

CPP_WARN_
MACRO_RED
EFINED

Macro
Redefined

Yes High

CPP_WARN_
MAIN

Main
Function
Conventions

Yes

CPP_WARN_
MAIN_RETUR
N_TYPE

Main	Return
Type

Yes High

CPP_WARN_
MALFORMED
WARNING
CHECK

Malformed
Warning
Check

Yes

CPP_WARN_
MANY_BRAC
ES_AROUND
_SCALAR_INI
T

Many	Braces
Around
Scalar	Init

Yes High

CPP_WARN_ Max	Tokens Yes

C
Checks

www.scitools.com Page	192/413

CPP_WARN_

MAX_TOKEN
S
CPP_WARN_
MAX_UNSIG
NED_ZERO

Max
Unsigned
Zero

Yes High

CPP_WARN_
MEMSET_TR
ANSPOSED_
ARGS

Memset
Transposed
Args

Yes High

CPP_WARN_
MEMSIZE_C
OMPARISON

Memsize
Comparison

Yes High

CPP_WARN_
MICROSOFT_
ABSTRACT

Microsoft
Abstract

Yes

CPP_WARN_
MICROSOFT_
ANON_TAG

Microsoft
Anonymous
Tag

Yes

CPP_WARN_
MICROSOFT_
CAST

Microsoft
Cast

Yes

CPP_WARN_
MICROSOFT_
CHARIZE

Microsoft
Charizing
Operator

Yes

CPP_WARN_
MICROSOFT_
COMMENT_P
ASTE

Microsoft
Comment
Paste

Yes

CPP_WARN_
MICROSOFT_
CONST_INIT

Microsoft
Const	Init

Yes

CPP_WARN_
MICROSOFT_
CPP_MACRO

Microsoft	C+
+	Macro

Yes

CPP_WARN_
MICROSOFT_
DEFAULT_AR
G_REDEFINIT
ION

Microsoft
Default	Arg
Redefinition

Yes

CPP_WARN_
MICROSOFT_

Microsoft
Drectve

Yes

C
Checks

www.scitools.com Page	193/413

MICROSOFT_

DRECTVE_SE
CTION

Drectve

Section

CPP_WARN_
MICROSOFT_
END_OF_FILE

Microsoft
End	of	File

Yes

CPP_WARN_
MICROSOFT_
ENUM_FORW
ARD_REFERE
NCE

Microsoft
Enum
Forward
Reference

Yes

CPP_WARN_
MICROSOFT_
ENUM_VALU
E

Microsoft
Enum	Value

Yes

CPP_WARN_
MICROSOFT_
EXCEPTION_
SPEC

Microsoft
Exception
Spec

Yes

CPP_WARN_
MICROSOFT_
EXISTS

Microsoft
Exists

Yes

CPP_WARN_
MICROSOFT_
EXPLICIT_CO
NSTRUCTOR
_CALL

Microsoft
Explicit
Constructor
Call

Yes

CPP_WARN_
MICROSOFT_
EXTRA_QUA
LIFICATION

Microsoft
Extra
Qualification

Yes

CPP_WARN_
MICROSOFT_
FIXED_ENUM

Microsoft
Fixed	Enum

Yes

CPP_WARN_
MICROSOFT_
FLEXIBLE_AR
RAY

Microsoft
Flexible	Array

Yes

CPP_WARN_
MICROSOFT_
GOTO

Microsoft
Goto

Yes

CPP_WARN_
MICROSOFT_

Microsoft
Inaccessible

Yes

C
Checks

www.scitools.com Page	194/413

MICROSOFT_

INACCESSIB
LE_BASE

Inaccessible

Base

CPP_WARN_
MICROSOFT_
INCLUDE

Microsoft
Include

Yes

CPP_WARN_
MICROSOFT_
MUTABLE_R
EFERENCE

Microsoft
Mutable
Reference

Yes

CPP_WARN_
MICROSOFT_
PURE_DEFINI
TION

Microsoft
Pure
Definition

Yes

CPP_WARN_
MICROSOFT_
REDECLARE_
STATIC

Microsoft
Redeclare
Static

Yes

CPP_WARN_
MICROSOFT_
SEALED

Microsoft
Sealed

Yes

CPP_WARN_
MICROSOFT_
STATIC_ASS
ERT

Microsoft
Static	Assert

Yes

CPP_WARN_
MICROSOFT_
TEMPLATE

Microsoft
Template

Yes

CPP_WARN_
MICROSOFT_
TEMPLATE_S
HADOW

Microsoft
Template
Shadow

Yes

CPP_WARN_
MICROSOFT_
UNION_MEM
BER_REFERE
NCE

Microsoft
Union
Member
Reference

Yes

CPP_WARN_
MICROSOFT_
UNQUALIFIE
D_FRIEND

Microsoft
Unqualified
Friend

Yes

CPP_WARN_
MICROSOFT_

Microsoft
Using	Decl

Yes

C
Checks

www.scitools.com Page	195/413

MICROSOFT_

USING_DECL
CPP_WARN_
MICROSOFT_
VOID_PSEUD
O_DTOR

Microsoft
Void	Pseudo
Destructor

Yes

CPP_WARN_
MISEXPECT

Misuse	of
__builtin_exp
ect()

Yes

CPP_WARN_
MISLEADING
_INDENTATIO
N

Misleading
Indentation

Yes

CPP_WARN_
MISMATCHE
D_NEW_DEL
ETE

Mismatched
New	Delete

Yes High

CPP_WARN_
MISMATCHE
D_TAGS

Mismatched
Tags

Yes

CPP_WARN_
MISSING_BR
ACES

Missing
Braces

Yes

CPP_WARN_
MISSING_CO
NSTINIT

Missing
Constinit

Yes

CPP_WARN_
MISSING_DE
CLARATIONS

Missing
Declarations

Yes High

CPP_WARN_
MISSING_EX
CEPTION_SP
EC

Missing
Exception
Spec

Yes High

CPP_WARN_
MISSING_FIE
LD_INITIALIZ
ERS

Missing	Field
Initializers

Yes

CPP_WARN_
MISSING_ME
THOD_RETU
RN_TYPE

Missing
Method
Return	Type

Yes

CPP_WARN_ Missing Yes

C
Checks

www.scitools.com Page	196/413

CPP_WARN_

MISSING_NO
RETURN

Missing

Noreturn
Attribute

CPP_WARN_
MISSING_PR
OTOTYPE_F
OR_CC

Missing
Prototype	for
Calling
Convention

Yes

CPP_WARN_
MISSING_PR
OTOTYPES

Missing
Prototypes

Yes

CPP_WARN_
MISSING_SE
LECTOR_NA
ME

Missing
Selector
Name

Yes

CPP_WARN_
MISSING_SY
SROOT

Missing
Sysroot

Yes

CPP_WARN_
MISSING_VA
RIABLE_DEC
LARATIONS

Missing
Variable
Declarations

Yes

CPP_WARN_
MISSPELLED
_ASSUMPTI
ON

Misspelled
Assumption

Yes

CPP_WARN_
MODULE_CO
NFLICT

Module
Conflict

Yes

CPP_WARN_
MODULE_FIL
E_CONFIG_M
ISMATCH

Module	File
Config
Mismatch

Yes

CPP_WARN_
MODULE_FIL
E_EXTENSIO
N

Module	File
Extension

Yes

CPP_WARN_
MODULE_IM
PORT_IN_EX
TERN_C

Module
Import	in
Extern	C

Yes

CPP_WARN_
MODULES_A
MBIGUOUS_I

Modules
Ambiguous
Internal

Yes

C
Checks

www.scitools.com Page	197/413

MBIGUOUS_I

NTERNAL_LI
NKAGE

Internal

Linkage

CPP_WARN_
MODULES_I
MPORT_NES
TED_REDUN
DANT

Modules
Import
Nested
Redundant

Yes

CPP_WARN_
MSVC_NOT_
FOUND

MSVC	Not
Found

Yes

CPP_WARN_
MULTICHAR

Multiple
Characters	in
Character
Literal

Yes High

CPP_WARN_
MULTIPLE_M
OVE_VBASE

Multiple
Move	Virtual
Base

Yes High

CPP_WARN_
NESTED_AN
ON_TYPES

Nested
Anon-Types

Yes

CPP_WARN_
NEW_RETUR
NS_NULL

New	Returns
Null

Yes High

CPP_WARN_
NEWLINE_EO
F

Newline	EOF
(End	of	File)

Yes

CPP_WARN_
NODEREF

Noderef
Attirbute

Yes High

CPP_WARN_
NON_C_TYP
EDEF_FOR_LI
NKAGE

Non-C
Typedef	for
Linkage

Yes High

CPP_WARN_
NON_LITERA
L_NULL_CO
NVERSION

Non-Literal
Null
Conversion

Yes High

CPP_WARN_
NON_POD_V
ARARGS

Non-POD
(Plain	Old
Data)
Variadic
Arguments

Yes High

C
Checks

www.scitools.com Page	198/413

CPP_WARN_
NON_POWER
_OF_TWO_A
LIGNMENT

Non-Power
of	Two
Alignment

Yes High

CPP_WARN_
NON_VIRTUA
L_DTOR

Non-Virtual
Destructor

Yes

CPP_WARN_
NONNULL

Null	as	an
Argument

Yes High

CPP_WARN_
NONPORTAB
LE_INCLUDE
_PATH

Non-Portable
Include	Path

Yes High

CPP_WARN_
NONPORTAB
LE_SYSTEM_
INCLUDE_PA
TH

Non-Portable
System
Include	Path

Yes

CPP_WARN_
NONPORTAB
LE_VECTOR_
INITIALIZATI
ON

Non-Portable
Vector
Initialization

Yes

CPP_WARN_
NONTRIVIAL
_MEMACCES
S

Nontrivial
Memory
Access

Yes High

CPP_WARN_
NULL_ARITH
METIC

Null
Arithmetic

Yes High

CPP_WARN_
NULL_CHAR
ACTER

Null
Character

Yes High

CPP_WARN_
NULL_CONV
ERSION

Null
Conversion

Yes High

CPP_WARN_
NULL_DEREF
ERENCE

Null
Dereference

Yes High

CPP_WARN_
NULL_POINT
ER_ARITHME

Null	Pointer
Arithmetic

Yes

C
Checks

www.scitools.com Page	199/413

ER_ARITHME

TIC
CPP_WARN_
NULL_POINT
ER_SUBTRA
CTION

Null	Pointer
Subtraction

Yes

CPP_WARN_
OBJC_BOOL
_CONSTANT
_CONVERSIO
N

Objective-C
Bool
Constant
Conversion

Yes

CPP_WARN_
OBJC_CIRCU
LAR_CONTAI
NER

Objective-C
Circular
Container

Yes

CPP_WARN_
OBJC_MULTI
PLE_METHO
D_NAMES

Objective-C
Multiple
Method
Names

Yes

CPP_WARN_
OBJC_READ
ONLY_WITH_
SETTER_PRO
PERTY

Objective-C
Readonly
with	Setter
Property

Yes

CPP_WARN_
OBJC_SIGNE
D_CHAR_BO
OL_IMPLICIT
_FLOAT_CON
VERSION

Objective-C
Signed	Char
Bool	Implicit
Float
Conversion

Yes

CPP_WARN_
OBJC_SIGNE
D_CHAR_BO
OL_IMPLICIT
_INT_CONVE
RSION

Objective-C
Signed	Char
Bool	Implicit
Int
Conversion

Yes

CPP_WARN_
ODR

One
Definition
Rule

Yes High

CPP_WARN_
OLD_STYLE_
CAST

Old	Style
Cast

Yes

CPP_WARN_ OpenMP	51 Yes

C
Checks

www.scitools.com Page	200/413

CPP_WARN_

OPENMP_51_
EXTENSIONS

OpenMP	51

Extensions

CPP_WARN_
OPENMP_CL
AUSES

OpenMP
Clauses

Yes

CPP_WARN_
OPENMP_LO
OP_FORM

OpenMP
Loop	Form

Yes

CPP_WARN_
OPENMP_MA
PPING

OpenMP
Mapping

Yes

CPP_WARN_
OPENMP_TA
RGET

OpenMP
Target

Yes

CPP_WARN_
OPTION_IGN
ORED

Option
Ignored

Yes

CPP_WARN_
ORDERED_C
OMPARE_FU
NCTION_POI
NTERS

Ordered
Compare
Function
Pointers

Yes High

CPP_WARN_
OUT_OF_LIN
E_DECLARAT
ION

Out	of	Line
Declaration

Yes

CPP_WARN_
OUT_OF_SC
OPE_FUNCTI
ON

Out	of	Scope
Function

Yes High

CPP_WARN_
OVER_ALIGN
ED

Over	Aligned Yes

CPP_WARN_
OVERLENGT
H_STRINGS

Long	String
Literals

Yes

CPP_WARN_
OVERLOADE
D_SHIFT_OP
_PARENTHES
ES

Overloaded
Shift
Operator
Parentheses

Yes High

C
Checks

www.scitools.com Page	201/413

CPP_WARN_
OVERLOADE
D_VIRTUAL

Overloaded
Virtual

Yes

CPP_WARN_
OVERRIDE_M
ODULE

Override
Module

Yes

CPP_WARN_
OVERRIDING
_T_OPTION

Overriding
Slash	T
Option

Yes

CPP_WARN_
PACKED

Packed
Attribute

Yes

CPP_WARN_
PADDED

Implicit
Padding

Yes

CPP_WARN_
PARENTHESE
S

Parentheses Yes

CPP_WARN_
PARENTHESE
S_EQUALITY

Parentheses
Equality

Yes High

CPP_WARN_
PASS_FAILE
D

Pass	Failed Yes

CPP_WARN_
PCH_DATE_T
IME

PCH
(Precompiled
Header)	Date
Time

Yes

CPP_WARN_
PEDANTIC

Pedantic Yes

CPP_WARN_
PEDANTIC_C
ORE_FEATUR
ES

Pedantic
Core
Features

Yes

CPP_WARN_
PESSIMIZING
_MOVE

Pessimizing
Move

Yes

CPP_WARN_
POINTER_AR
ITH

Pointer
Arithmetic

Yes High

CPP_WARN_
POINTER_BO
OL_CONVER

Pointer	Bool
Conversion

Yes High

C
Checks

www.scitools.com Page	202/413

OL_CONVER

SION
CPP_WARN_
POINTER_CO
MPARE

Pointer
Compare

Yes High

CPP_WARN_
POINTER_IN
TEGER_COM
PARE

Pointer
Integer
Compare

Yes High

CPP_WARN_
POINTER_SI
GN

Pointer	Sign Yes High

CPP_WARN_
POINTER_TO
_ENUM_CAS
T

Pointer	to
Enum	Cast

Yes High

CPP_WARN_
POINTER_TO
_INT_CAST

Pointer	to	Int
Cast

Yes High

CPP_WARN_
POINTER_TY
PE_MISMATC
H

Pointer	Type
Mismatch

Yes High

CPP_WARN_
POISON_SYS
TEM_DIRECT
ORIES

Poison
System
Directories

Yes

CPP_WARN_
POTENTIALL
Y_EVALUATE
D_EXPRESSI
ON

Potentially
Evaluated
Expression

Yes High

CPP_WARN_
PRAGMA_CL
ANG_ATTRIB
UTE

Pragma
Clang
Attribute

Yes

CPP_WARN_
PRAGMA_ME
SSAGES

Preprocessor
#Pragma
Messages

Yes

CPP_WARN_
PRAGMA_ON
CE_OUTSIDE
_HEADER

Pragma	once
Outside
Header

Yes High

C
Checks

www.scitools.com Page	203/413

CPP_WARN_
PRAGMA_PA
CK

Pragma	Pack Yes

CPP_WARN_
PRAGMA_PA
CK_SUSPICI
OUS_INCLU
DE

Pragma	Pack
Suspicious
Include

Yes

CPP_WARN_
PRAGMA_SY
STEM_HEAD
ER_OUTSIDE
_HEADER

Pragma
System
Header
Outside
Header

Yes

CPP_WARN_
PRAGMAS

Pragmas Yes

CPP_WARN_
PRE_C2X_C
OMPAT

Pre	C2X
Compatibility

Yes

CPP_WARN_
PRE_CPP2B_
COMPAT

Pre	C++2B
Compatibility

Yes

CPP_WARN_
PRE_CPP14_
COMPAT

Pre	C++14
Compatibility

Yes

CPP_WARN_
PRE_CPP17_
COMPAT

Pre	C++17
Compatibility

Yes

CPP_WARN_
PRE_CPP17_
COMPAT_PE
DANTIC

Pre	C++17
Compatibility
Pedantic

Yes

CPP_WARN_
PRE_CPP20_
COMPAT

Pre	C++20
Compatibility

Yes

CPP_WARN_
PRE_CPP20_
COMPAT_PE
DANTIC

Pre	C++20
Compatibility
Pedantic

Yes

CPP_WARN_
PRE_OPENM
P_51_COMPA
T

Pre	OpenMP
51
Compatibility

Yes

C
Checks

www.scitools.com Page	204/413

CPP_WARN_
PREDEFINED
IDENTIFIER
OUTSIDE_FU
NCTION

Predefined
Identifier
Outside
Function

Yes

CPP_WARN_
PRIVATE_EXT
ERN

Private
Extern

Yes

CPP_WARN_
PRIVATE_HE
ADER

Private
Header

Yes

CPP_WARN_
PROFILE_INS
TR_MISSING

Profile
Instrumented
Code	Missing

Yes

CPP_WARN_
PROFILE_INS
TR_OUT_OF_
DATE

Profile
Instrumented
Code	Out	of
Date

Yes

CPP_WARN_
PROFILE_INS
TR_UNPROFI
LED

Profile
Instrumented
Code
Unprofiled

Yes

CPP_WARN_
PSABI

PSABI
(Processor-
Specific
Application
Binary
Interface)

Yes

CPP_WARN_
QUALIFIED_V
OID_RETURN
_TYPE

Qualified
Void	Return
Type

Yes High

CPP_WARN_
RANGE_LOO
P_BIND_REF
ERENCE

Range	Loop
Bind
Reference

Yes

CPP_WARN_
RANGE_LOO
P_CONSTRU
CT

Range	Loop
Construct

Yes

CPP_WARN_
REDECLARE

Re-Declared
Class

Yes High

C
Checks

www.scitools.com Page	205/413

REDECLARE

D_CLASS_M
EMBER

Class

Member

CPP_WARN_
REDUNDANT
_CONSTEVA
L_IF

Redundant
Consteval	If

Yes High

CPP_WARN_
REDUNDANT
_MOVE

Redundant
Move

Yes

CPP_WARN_
REDUNDANT
_PARENS

Redundant
Parentheses

Yes

CPP_WARN_
REGISTER

Register
Keyword

Yes

CPP_WARN_
REINTERPRE
T_BASE_CLA
SS

Reinterpret
Base	Class

Yes High

CPP_WARN_
REORDER_C
TOR

Reorder
Constructor

Yes

CPP_WARN_
REORDER_IN
IT_LIST

Reorder
Initializer	List

Yes High

CPP_WARN_
RESERVED_I
DENTIFIER

Reserved
Identifier

Yes

CPP_WARN_
RESERVED_
MACRO_IDE
NTIFIER

Reserved
Macro
Identifier

Yes

CPP_WARN_
RESERVED_U
SER_DEFINE
D_LITERAL

Reserved
User	Defined
Literal

Yes

CPP_WARN_
RESTRICT_E
XPANSION

Restrict
Expansion

Yes

CPP_WARN_
RETAINED_L
ANGUAGE_LI

Retained
Language
Linkage

Yes

C
Checks

www.scitools.com Page	206/413

ANGUAGE_LI

NKAGE
CPP_WARN_
RETURN_STA
CK_ADDRES
S

Return	Stack
Address

Yes High

CPP_WARN_
RETURN_TY
PE

Return	Type Yes High

CPP_WARN_
RETURN_TY
PE_C_LINKA
GE

Return	Type
C	Linkage

Yes High

CPP_WARN_
REWRITE_NO
T_BOOL

Rewrite	Not
Bool

Yes

CPP_WARN_
RTTI

Run-Time
Type
Information

Yes

CPP_WARN_
SARIF_FORM
AT_UNSTABL
E

SARIF	Format
Unstable

Yes

CPP_WARN_
SECTION

Section
Attributes

Yes

CPP_WARN_
SELF_ASSIG
N

Self	Assign Yes

CPP_WARN_
SELF_ASSIG
N_FIELD

Self	Assign
Field

Yes High

CPP_WARN_
SELF_ASSIG
N_OVERLOA
DED

Self	Assign
Overloaded

Yes

CPP_WARN_
SELF_MOVE

Self	Move Yes

CPP_WARN_
SENTINEL

Sentinel
Attribute

Yes

CPP_WARN_
SERIALIZED_
DIAGNOSTIC

Serialized
Diagnostics

Yes

C
Checks

www.scitools.com Page	207/413

DIAGNOSTIC

S
CPP_WARN_
SHADOW

Shadowing
Identifiers

Yes

CPP_WARN_
SHADOW_FI
ELD

Shadowing
Field

Yes

CPP_WARN_
SHADOW_FI
ELD_IN_CON
STRUCTOR

Shadowing
Field	in
Constructor

Yes

CPP_WARN_
SHADOW_FI
ELD_IN_CON
STRUCTOR_
MODIFIED

Shadowing
Field	in
Constructor
Modified

Yes

CPP_WARN_
SHADOW_U
NCAPTURED
_LOCAL

Shadowing
Uncaptured
Local

Yes

CPP_WARN_
SHIFT_COUN
T_NEGATIVE

Shift	Count
Negative

Yes High

CPP_WARN_
SHIFT_COUN
T_OVERFLO
W

Shift	Count
Overflow

Yes High

CPP_WARN_
SHIFT_NEGA
TIVE_VALUE

Shift
Negative
Value

Yes High

CPP_WARN_
SHIFT_OP_P
ARENTHESE
S

Shift
Operator
Parentheses

Yes High

CPP_WARN_
SHIFT_OVER
FLOW

Shift
Overflow

Yes High

CPP_WARN_
SHIFT_SIGN_
OVERFLOW

Shift	Sign
Overflow

Yes

CPP_WARN_
SHORTEN_6

Shorten
Integer	Type

Yes

C
Checks

www.scitools.com Page	208/413

SHORTEN_6

4_TO_32

Integer	Type

Width
CPP_WARN_
SIGN_COMP
ARE

Sign
Compare

Yes

CPP_WARN_
SIGN_CONVE
RSION

Sign
Conversion

Yes

CPP_WARN_
SIGNED_ENU
M_BITFIELD

Signed	Enum
Bitfield

Yes

CPP_WARN_
SIGNED_UNS
IGNED_WCH
AR

Signed
Unsigned
Wchar

Yes

CPP_WARN_
SINGLE_BIT_
BITFIELD_CO
NSTANT_CO
NVERSION

Single	Bit
Bitfield
Constant
Conversion

Yes High

CPP_WARN_
SIZEOF_ARR
AY_ARGUME
NT

Sizeof	Array
Argument

Yes High

CPP_WARN_
SIZEOF_ARR
AY_DECAY

Sizeof	Array
Decay

Yes High

CPP_WARN_
SIZEOF_ARR
AY_DIV

Sizeof	Array
Division

Yes High

CPP_WARN_
SIZEOF_POIN
TER_DIV

Sizeof
Pointer
Division

Yes High

CPP_WARN_
SIZEOF_POIN
TER_MEMAC
CESS

Sizeof
Pointer
Memory
Access

Yes High

CPP_WARN_
SLASH_U_FI
LENAME

Slash	U
Filename

Yes

CPP_WARN_
SLH_ASM_G

SLH
(Speculative

Yes

C
Checks

www.scitools.com Page	209/413

SLH_ASM_G

OTO

(Speculative

Load
Hardening)
Assembly
Goto

CPP_WARN_
SOMETIMES
_UNINITIALIZ
ED

Sometimes
Uninitialized

Yes

CPP_WARN_
SOURCE_US
ES_OPENMP

Source	Uses
OpenMP

Yes

CPP_WARN_
SPIR_COMPA
T

SPIR
(Sampler
Initializer)
Compatibility

Yes

CPP_WARN_
STACK_EXHA
USTED

Stack
Exhausted

Yes

CPP_WARN_
STACK_PROT
ECTOR

Stack
Protector

Yes

CPP_WARN_
STATIC_FLOA
T_INIT

Static	Float
Init

Yes

CPP_WARN_
STATIC_IN_I
NLINE

Static	in
Inline

Yes

CPP_WARN_
STATIC_INLI
NE_EXPLICIT
_INSTANTIAT
ION

Static	Inline
Explicit
Instantiation

Yes High

CPP_WARN_
STATIC_LOC
AL_IN_INLIN
E

Static	Local
in	Inline

Yes High

CPP_WARN_
STATIC_SELF
_INIT

Static	Self
Init

Yes High

CPP_WARN_
STDLIBCXX_
NOT_FOUND

LibStdC++
Headers	Not
Found

Yes

C
Checks

www.scitools.com Page	210/413

CPP_WARN_
STRICT_POT
ENTIALLY_DI
RECT_SELEC
TOR

Strict
Potentially
Direct
Selector

Yes

CPP_WARN_
STRICT_PRO
TOTYPES

Strict
Prototypes

Yes

CPP_WARN_
STRICT_SELE
CTOR_MATC
H

Strict
Selector
Match

Yes

CPP_WARN_
STRING_CO
MPARE

String
Compare

Yes High

CPP_WARN_
STRING_CON
CATENATION

String
Concatenatio
n

Yes

CPP_WARN_
STRING_CON
VERSION

String
Conversion

Yes

CPP_WARN_
STRING_PLU
S_CHAR

String	Plus
Char

Yes High

CPP_WARN_
STRING_PLU
S_INT

String	Plus
Int

Yes High

CPP_WARN_
STRLCPY_ST
RLCAT_SIZE

Strlcpy
Strlcat	Size

Yes High

CPP_WARN_
STRNCAT_SI
ZE

Strncat	Size Yes High

CPP_WARN_
SUGGEST_D
ESTRUCTOR
_OVERRIDE

Suggest
Destructor
Override

Yes

CPP_WARN_
SUGGEST_O
VERRIDE

Suggest
Override

Yes

CPP_WARN_ Super	Class Yes

C
Checks

www.scitools.com Page	211/413

CPP_WARN_

SUPER_CLAS
S_METHOD_
MISMATCH

Super	Class

Method
Mismatch

CPP_WARN_
SUSPICIOUS
_BZERO

Suspicious
Argument	for
Bzero
Function

Yes

CPP_WARN_
SWITCH

Switch
Statements

Yes High

CPP_WARN_
SWITCH_BO
OL

Switch	Bool Yes High

CPP_WARN_
SWITCH_EN
UM

Switch	Enum Yes

CPP_WARN_
SYNC_FETC
H_AND_NAN
D_SEMANTIC
S_CHANGED

Sync	Fetch
And	Nand
Semantics
Changed

Yes

CPP_WARN_
TARGET_CLO
NES_MIXED_
SPECIFIERS

Target
Clones	Mixed
Specifiers

Yes

CPP_WARN_
TAUTOLOGIC
AL_BITWISE_
COMPARE

Tautological
Bitwise
Compare

Yes

CPP_WARN_
TAUTOLOGIC
AL_COMPAR
E

Tautological
Compare

Yes

CPP_WARN_
TAUTOLOGIC
AL_CONSTA
NT_COMPAR
E

Tautological
Constant
Compare

Yes High

CPP_WARN_
TAUTOLOGIC
AL_CONSTA
NT_OUT_OF_
RANGE_COM

Tautological
Constant	Out
of	Range
Compare

Yes High

C
Checks

www.scitools.com Page	212/413

RANGE_COM

PARE
CPP_WARN_
TAUTOLOGIC
AL_OVERLAP
_COMPARE

Tautological
Overlap
Compare

Yes

CPP_WARN_
TAUTOLOGIC
AL_POINTER
_COMPARE

Tautological
Pointer
Compare

Yes High

CPP_WARN_
TAUTOLOGIC
AL_TYPE_LI
MIT_COMPA
RE

Tautological
Type	Limit
Compare

Yes

CPP_WARN_
TAUTOLOGIC
AL_UNDEFIN
ED_COMPAR
E

Tautological
Undefined
Compare

Yes High

CPP_WARN_
TAUTOLOGIC
AL_UNSIGNE
D_CHAR_ZE
RO_COMPAR
E

Tautological
Unsigned
Char	Zero
Compare

Yes

CPP_WARN_
TAUTOLOGIC
AL_UNSIGNE
D_ENUM_ZE
RO_COMPAR
E

Tautological
Unsigned
Enum	Zero
Compare

Yes

CPP_WARN_
TAUTOLOGIC
AL_UNSIGNE
D_ZERO_CO
MPARE

Tautological
Unsigned
Zero
Compare

Yes

CPP_WARN_
TAUTOLOGIC
AL_VALUE_R
ANGE_COMP
ARE

Tautological
Value	Range
Compare

Yes

CPP_WARN_ TCB	(Trusted Yes

C
Checks

www.scitools.com Page	213/413

CPP_WARN_

TCB_ENFOR
CEMENT

TCB	(Trusted

Computing
Base)
Enforcement

CPP_WARN_
TENTATIVE_
DEFINITION_I
NCOMPLETE
_TYPE

Tentative
Definition
Incomplete
Type

Yes High

CPP_WARN_
THREAD_SA
FETY_ANALY
SIS

Thread
Safety
Analysis

Yes

CPP_WARN_
THREAD_SA
FETY_ATTRIB
UTES

Thread
Safety
Attributes

Yes

CPP_WARN_
THREAD_SA
FETY_BETA

Thread
Safety	Beta

Yes

CPP_WARN_
THREAD_SA
FETY_NEGAT
IVE

Thread
Safety
Negative

Yes

CPP_WARN_
THREAD_SA
FETY_PRECI
SE

Thread
Safety
Precise

Yes

CPP_WARN_
THREAD_SA
FETY_REFER
ENCE

Thread
Safety
Reference

Yes

CPP_WARN_
THREAD_SA
FETY_VERBO
SE

Thread
Safety
Verbose

Yes

CPP_WARN_
TRIGRAPHS

Trigraphs Yes High

CPP_WARN_
TYPE_SAFET
Y

Type	Safety Yes High

CPP_WARN_
TYPEDEF_RE

Typedef
Redefinition

Yes High

C
Checks

www.scitools.com Page	214/413

TYPEDEF_RE

DEFINITION
CPP_WARN_
TYPENAME_
MISSING

Typename
Missing

Yes High

CPP_WARN_
UNABLE_TO_
OPEN_STATS
_FILE

Unable	to
Open	Stats
File

Yes

CPP_WARN_
UNALIGNED_
ACCESS

Unaligned
Access

Yes

CPP_WARN_
UNALIGNED_
QUALIFIER_I
MPLICIT_CAS
T

Unaligned
Qualifier
Implicit	Cast

Yes

CPP_WARN_
UNDEF

Undefined
Macros

Yes

CPP_WARN_
UNDEF_PREF
IX

Undefined
Macros	of	a
Certain	Prefix

Yes

CPP_WARN_
UNDEFINED_
BOOL_CONV
ERSION

Undefined
Bool
Conversion

Yes High

CPP_WARN_
UNDEFINED_
FUNC_TEMP
LATE

Undefined
Function
Template

Yes

CPP_WARN_
UNDEFINED_
INLINE

Undefined
Inline

Yes High

CPP_WARN_
UNDEFINED_
INTERNAL

Undefined
Internal

Yes High

CPP_WARN_
UNDEFINED_
INTERNAL_T
YPE

Undefined
Internal	Type

Yes

CPP_WARN_
UNDEFINED_

Undefined
Reinterpret

Yes

C
Checks

www.scitools.com Page	215/413

UNDEFINED_

REINTERPRE
T_CAST

Reinterpret

Cast

CPP_WARN_
UNDEFINED_
VAR_TEMPLA
TE

Undefined
Var	Template

Yes High

CPP_WARN_
UNDERALIG
NED_EXCEPT
ION_OBJECT

Underaligned
Exception
Object

Yes

CPP_WARN_
UNEVALUATE
D_EXPRESSI
ON

Unevaluated
Expression

Yes High

CPP_WARN_
UNGUARDED
_AVAILABILIT
Y

Unguarded
Availability

Yes

CPP_WARN_
UNGUARDED
_AVAILABILIT
Y_NEW

Unguarded
Availability
New

Yes High

CPP_WARN_
UNICODE

Unicode
Escape
Sequences

Yes High

CPP_WARN_
UNICODE_H
OMOGLYPH

Unicode
Homoglyph

Yes High

CPP_WARN_
UNICODE_W
HITESPACE

Unicode
Whitespace

Yes High

CPP_WARN_
UNICODE_ZE
RO_WIDTH

Unicode	Zero
Width

Yes High

CPP_WARN_
UNINITIALIZE
D

Uninitialized Yes

CPP_WARN_
UNINITIALIZE
D_CONST_R
EFERENCE

Uninitialized
Const
Reference

Yes

C
Checks

www.scitools.com Page	216/413

CPP_WARN_
UNKNOWN_
ARGUMENT

Unknown
Argument

Yes

CPP_WARN_
UNKNOWN_
ASSUMPTIO
N

Unknown
Assumption

Yes

CPP_WARN_
UNKNOWN_
ATTRIBUTES

Unknown
Attributes

Yes

CPP_WARN_
UNKNOWN_
DIRECTIVES

Unknown
Directives

Yes High

CPP_WARN_
UNKNOWN_
ESCAPE_SEQ
UENCE

Unknown
Escape
Sequence

Yes High

CPP_WARN_
UNKNOWN_
PRAGMAS

Unknown
Pragmas

Yes

CPP_WARN_
UNKNOWN_
SANITIZERS

Unknown
Sanitizers

Yes

CPP_WARN_
UNKNOWN_
WARNING_O
PTION

Unknown
Warning
Option

Yes

CPP_WARN_
UNNAMED_T
YPE_TEMPLA
TE_ARGS

Unnamed
Type
Template
Args

Yes

CPP_WARN_
UNNEEDED_I
NTERNAL_D
ECLARATION

Unneeded
Internal
Declaration

Yes

CPP_WARN_
UNNEEDED_
MEMBER_FU
NCTION

Unneeded
Member
Function

Yes

CPP_WARN_
UNQUALIFIE
D_STD_CAST

Unqualified
Standard
Cast	Call

Yes High

C
Checks

www.scitools.com Page	217/413

D_STD_CAST

_CALL
CPP_WARN_
UNREACHAB
LE_CODE

Unreachable
Code

Yes

CPP_WARN_
UNREACHAB
LE_CODE_BR
EAK

Unreachable
Code	Break

Yes

CPP_WARN_
UNREACHAB
LE_CODE_FA
LLTHROUGH

Unreachable
Code
Fallthrough

Yes

CPP_WARN_
UNREACHAB
LE_CODE_GE
NERIC_ASSO
C

Unreachable
Code	Generic
Assoc

Yes

CPP_WARN_
UNREACHAB
LE_CODE_LO
OP_INCREME
NT

Unreachable
Code	Loop
Increment

Yes

CPP_WARN_
UNREACHAB
LE_CODE_RE
TURN

Unreachable
Code	Return

Yes

CPP_WARN_
UNSEQUENC
ED

Unsequence
d
Modifications

Yes High

CPP_WARN_
UNSUPPORT
ED_ABI

Unsupported
ABI
(Application
Binary
Interface)

Yes

CPP_WARN_
UNSUPPORT
ED_ABS

Unsupported
Absolute
Value
Argument

Yes

CPP_WARN_
UNSUPPORT
ED_AVAILABI
LITY_GUARD

Unsupported
Availability
Guard

Yes High

C
Checks

www.scitools.com Page	218/413

CPP_WARN_
UNSUPPORT
ED_CB

Unsupported
Compact
Branches

Yes

CPP_WARN_
UNSUPPORT
ED_DLL_BAS
E_CLASS_TE
MPLATE

Unsupported
DLL	Base
Class
Template

Yes

CPP_WARN_
UNSUPPORT
ED_FLOATIN
G_POINT_OP
T

Unsupported
Floating	Point
Option

Yes

CPP_WARN_
UNSUPPORT
ED_FRIEND

Unsupported
Friend

Yes High

CPP_WARN_
UNSUPPORT
ED_GPOPT

Unsupported
GPopt
(Gaussian
Process
Optimization)

Yes

CPP_WARN_
UNSUPPORT
ED_NAN

Unsupported
Nan
Argument

Yes

CPP_WARN_
UNSUPPORT
ED_TARGET_
OPT

Unsupported
Target	Option

Yes

CPP_WARN_
UNSUPPORT
ED_VISIBILIT
Y

Unsupported
Visibility

Yes

CPP_WARN_
UNUSABLE_
PARTIAL_SP
ECIALIZATIO
N

Unusable
Partial
Specializatio
n

Yes

CPP_WARN_
UNUSED_BU
T_SET_PARA
METER

Unused	but
Set
Parameter

Yes

CPP_WARN_ Unused	but Yes

C
Checks

www.scitools.com Page	219/413

CPP_WARN_

UNUSED_BU
T_SET_VARIA
BLE

Unused	but

Set	Variable

CPP_WARN_
UNUSED_CO
MMAND_LIN
E_ARGUMEN
T

Unused
Command
Line
Argument

Yes

CPP_WARN_
UNUSED_CO
MPARISON

Unused
Comparison

Yes High

CPP_WARN_
UNUSED_CO
NST_VARIAB
LE

Unused
Const
Variable

Yes

CPP_WARN_
UNUSED_EX
CEPTION_PA
RAMETER

Unused
Exception
Parameter

Yes

CPP_WARN_
UNUSED_FU
NCTION

Unused
Function

Yes

CPP_WARN_
UNUSED_GE
TTER_RETUR
N_VALUE

Unused
Getter	Return
Value

Yes

CPP_WARN_
UNUSED_LA
BEL

Unused	LabelYes

CPP_WARN_
UNUSED_LA
MBDA_CAPT
URE

Unused
Lambda
Capture

Yes

CPP_WARN_
UNUSED_LO
CAL_TYPEDE
F

Unused	Local
Typedef

Yes

CPP_WARN_
UNUSED_MA
CROS

Unused
Macros

Yes

CPP_WARN_
UNUSED_ME

Unused
Member

Yes

C
Checks

www.scitools.com Page	220/413

UNUSED_ME

MBER_FUNC
TION

Member

Function

CPP_WARN_
UNUSED_PA
RAMETER

Unused
Parameter

Yes

CPP_WARN_
UNUSED_PRI
VATE_FIELD

Unused
Private	Field

Yes

CPP_WARN_
UNUSED_PR
OPERTY_IVA
R

Unused
Property	IVar
(Instance
Variable)

Yes

CPP_WARN_
UNUSED_RE
SULT

Unused
Result

Yes High

CPP_WARN_
UNUSED_TE
MPLATE

Unused
Template

Yes

CPP_WARN_
UNUSED_VA
LUE

Unused	ValueYes High

CPP_WARN_
UNUSED_VA
RIABLE

Unused
Variable

Yes

CPP_WARN_
UNUSED_VO
LATILE_LVAL
UE

Unused
Volatile
Lvalue

Yes High

CPP_WARN_
USED_BUT_
MARKED_UN
USED

Used	but
Marked
Unused

Yes

CPP_WARN_
USER_DEFIN
ED_LITERAL
S

User	Defined
Literals

Yes High

CPP_WARN_
USER_DEFIN
ED_WARNIN
GS

User	Defined
Warnings

Yes

CPP_WARN_ Variadic Yes High

C
Checks

www.scitools.com Page	221/413

CPP_WARN_

VARARGS

Variadic

Arguments
CPP_WARN_
VARIADIC_M
ACROS

Variadic
Macros

Yes

CPP_WARN_
VEC_ELEM_S
IZE

Vector
Element	Size

Yes

CPP_WARN_
VECTOR_CO
NVERSION

Vector
Conversion

Yes

CPP_WARN_
VEXING_PAR
SE

Vexing	Parse
Occurrences

Yes High

CPP_WARN_
VISIBILITY

Visibility	of
Declarations

Yes High

CPP_WARN_
VLA

VLA	(Variable
Length	Array)

Yes

CPP_WARN_
VLA_EXTENS
ION

VLA	(Variable
Length	Array)
Extension

Yes

CPP_WARN_
VOID_POINT
ER_TO_ENU
M_CAST

Void	Pointer
to	Enum	Cast

Yes High

CPP_WARN_
VOID_POINT
ER_TO_INT_
CAST

Void	Pointer
to	Int	Cast

Yes High

CPP_WARN_
VOID_PTR_D
EREFERENCE

Void	Pointer
Dereference

Yes High

CPP_WARN_
WARNINGS

Preprocessor
#Warnings

Yes

CPP_WARN_
WASM_EXCE
PTION_SPEC

Wasm
Exception
Spec

Yes

CPP_WARN_
WEAK_VTAB
LES

Weak
VTables
(Virtual
Tables)

Yes

CPP_WARN_ Writable Yes High

C
Checks

www.scitools.com Page	222/413

CPP_WARN_

WRITABLE_S
TRINGS

Writable

Strings

CPP_WARN_
XOR_USED_
AS_POW

Xor	Used	as
Power

Yes High

CPP_WARN_
ZERO_AS_N
ULL_POINTE
R_CONSTAN
T

Zero	as	Null
Pointer
Constant

Yes

CPP_WARN_
ZERO_LENG
TH_ARRAY

Zero	Length
Array

Yes

CTR50-CPP Guarantee
that
container
indices	and
iterators	are
within	the
valid	range

Yes High

CTR51-CPP Use	valid
references,
pointers,	and
iterators	to
reference
elements	of	a
container

Yes High

CTR52-CPP Guarantee
that	library
functions	do
not	overflow

Yes High

CTR53-CPP Use	valid
iterator
ranges

Yes High

CTR54-CPP Do	not
subtract
iterators	that
do	not	refer
to	the	same
container

Yes Medium

CTR55-CPP Do	not	use
an	additive

Yes

C
Checks

www.scitools.com Page	223/413

an	additive

operator	on
an	iterator	if
the	result
would
overflow

CTR56-CPP Do	not	use
pointer
arithmetic	on
polymorphic
objects

Yes High

CTR57-CPP Provide	a
valid	ordering
predicate

Yes Low

CTR58-CPP Predicate
function
objects
should	not	be
mutable

Yes Low

DCL30-C-A Declare
objects	with
appropriate
storage
durations	-
assigning
addresses

Yes High

DCL30-C-B Declare
objects	with
appropriate
storage
durations	-
returning
addresses

Yes High

DCL31-C Declare
identifiers
before	using
them

Yes Low

DCL36-C Do	not
declare	an
identifier	with
conflicting
linkage
classification

Yes Medium

C
Checks

www.scitools.com Page	224/413

classification

s
DCL37-C Do	not

declare	or
define	a
reserved
identifier

Yes Low

DCL38-C Use	the
correct
syntax	when
declaring	a
flexible	array
member

Yes Low

DCL39-C Avoid
information
leakage	when
passing	a
structure
across	a	trust
boundary

No Low

DCL40-C Do	not	create
incompatible
declarations
of	the	same
function	or
object	

Yes Low

DCL41-C Do	not
declare
variables
inside	a
switch
statement
before	the
first	case
label

Yes Medium

DCL50-CPP Do	not	define
a	C-style
variadic
function

Yes High

DCL52-CPP Never	qualify
a	reference
type	with
const	or

Yes Low

C
Checks

www.scitools.com Page	225/413

const	or

volatile
DCL54-CPP Overload

allocation
and
deallocation
functions	as
a	pair	in	the
same	scope

Yes Low

DCL55-CPP Avoid
information
leakage	when
passing	a
class	object
across	a	trust
boundary

No Low

DCL56-CPP Avoid	cycles
during
initialization
of	static
objects

Yes Low

DCL57-CPP Do	not	let
exceptions
escape	from
destructors
or
deallocation
functions

Yes Low

DCL58-CPP Do	not
modify	the
standard
namespaces

Yes High

DCL59-CPP Do	not	define
an	unnamed
namespace
in	a	header
file

Yes Medium

DCL60-CPP Obey	the
one-
definition	rule

Yes High

EFFECTIVEC
PP_02

2.	Do	Not
Use	#define

Yes

EFFECTIVEC 3.	Use	Const Yes

C
Checks

www.scitools.com Page	226/413

EFFECTIVEC

PP_03

3.	Use	Const

whenever
possible

EFFECTIVEC
PP_04

4.	Make	sure
that	objects
are	initialized
before	they
are	used

Yes

EFFECTIVEC
PP_07

7.	Non-Virtual
Destructors
in	Base
Classes

Yes

EFFECTIVEC
PP_16

16.	Use	the
same	form	in
correspondin
g	uses	of
new	and
delete

Yes

EFFECTIVEC
PP_17

17.	Store
newed
objects	in
smart
pointers	in
standalone
statements

Yes

EFFECTIVEC
PP_20

20.	Prefer
pass-by-
reference-to-
const	to	pass
by	value

Yes

EFFECTIVEC
PP_22

22.
Datamember
s	should	be
declared
private

Yes

EFFECTIVEC
PP_26

26.	Postpone
variable
definitions	as
long	as
possible

Yes

EFFECTIVEC
PP_27

27.	Minimize
casting

Yes

EFFECTIVEC 33.	Avoid Yes

C
Checks

www.scitools.com Page	227/413

EFFECTIVEC

PP_33

33.	Avoid

hiding
inherited
names

EFFECTIVEC
PP_35

35.	Consider
alternatives
to	virtual
functions

Yes

EFFECTIVEC
PP_36

36.	Never
redefine	an
inherited
non-virtual
function

Yes

ENV30-C Do	not
modify	the
object
referenced
by	the	return
value	of
certain
functions

Yes Low

ENV31-C Do	not	rely
on	an
environment
pointer
following	an
operation
that	may
invalidate	it

Yes Low

ENV32-C All	exit
handlers
must	return
normally

Yes Medium

ENV33-C Do	not	call
system()

Yes High

ENV34-C Do	not	store
pointers
returned	by
certain
functions

Yes Low

ERR30-C Take	care
when	reading
errno

Yes Medium

C
Checks

www.scitools.com Page	228/413

ERR32-C Do	not	rely
on
indeterminat
e	values	of
errno

No Low

ERR33-C Detect	and
handle
standard
library	errors

Yes High

ERR34-C Detect	errors
when
converting	a
string	to	a
number

Yes Medium

ERR51-CPP Handle	all
exceptions

Yes Low

ERR52-CPP Do	not	use
setjmp()	or
longjmp()

Yes Low

ERR53-CPP Do	not
reference
base	classes
or	class	data
members	in	a
constructor
or	destructor
function-try-
block	handler

Yes Low

ERR54-CPP Catch
handlers
should	order
their
parameter
types	from
most	derived
to	least
derived

Yes Medium

ERR55-CPP Honor
exception
specification
s

Yes Low

ERR57-CPP Do	not	leak Yes Low

C
Checks

www.scitools.com Page	229/413

Do	not	leak

resources
when
handling
exceptions

ERR58-CPP Handle	all
exceptions
thrown
before	main()
begins
executing

Yes Low

ERR60-CPP Exception
objects	must
be	nothrow
copy
constructible

Yes Low

ERR61-CPP Catch
exceptions
by	lvalue
reference

Yes Low

ERR62-CPP Detect	errors
when
converting	a
string	to	a
number

Yes Medium

EXP30-C-A Do	not
depend	on
the	order	of
evaluation	for
side	effects	-
calls

Yes Medium

EXP30-C-B Do	not
depend	on
the	order	of
evaluation	for
side	effects	-
other

Yes Medium

EXP32-C Do	not
access	a
volatile
object
through	a
nonvolatile

Yes Low

C
Checks

www.scitools.com Page	230/413

nonvolatile

reference
EXP33-C Do	not	read

uninitialized
memory

Yes High

EXP34-C Do	not
dereference
null	pointers

Yes High

EXP35-C Do	not
modify
objects	with
temporary
lifetime

No Low

EXP36-C Do	not	cast
pointers	into
more	strictly
aligned
pointer	types

Yes Low

EXP37-C Call	functions
with	the
correct
number	and
type	of
arguments

Yes Medium

EXP39-C Do	not
access	a
variable
through	a
pointer	of	an
incompatible
type

Yes Medium

EXP40-C Do	not
modify
constant
objects

No Low

EXP42-C Do	not
compare
padding	data

Yes Medium

EXP43-C Avoid
undefined
behavior
when	using
restrict-

No Medium

C
Checks

www.scitools.com Page	231/413

restrict-

qualified
pointers

EXP44-C Do	not	rely
on	side
effects	in
operands	to
sizeof,
_Alignof,	or
_Generic

Yes Low

EXP45-C Do	not
perform
assignments
in	selection
statements

Yes Low

EXP46-C Do	not	use	a
bitwise
operator	with
a	Boolean-
like	operand

Yes Low

EXP47-C Do	not	call
va_arg	with
an	argument
of	the
incorrect
type

Yes Medium

EXP50-CPP Do	not
depend	on
the	order	of
evaluation	for
side	effects

Yes Medium

EXP51-CPP Do	not	delete
an	array
through	a
pointer	of	the
incorrect
type

Yes Low

EXP52-CPP Do	not	rely
on	side
effects	in
unevaluated
operands

Yes Low

EXP53-CPP Do	not	read Yes High

C
Checks

www.scitools.com Page	232/413

Do	not	read

uninitialized
memory

EXP54-CPP Do	not
access	an
object
outside	of	its
lifetime

Yes High

EXP55-CPP Do	not
access	a	cv-
qualified
object
through	a	cv-
unqualified
type

Yes Medium

EXP56-CPP Do	not	call	a
function	with
a
mismatched
language
linkage

No Low

EXP57-CPP Do	not	cast
or	delete
pointers	to
incomplete
classes

Yes Medium

EXP58-CPP Pass	an
object	of	the
correct	type
to	va_start

Yes Medium

EXP59-CPP Use
offsetof()	on
valid	types
and	members

Yes Medium

EXP61-CPP A	lambda
object	must
not	outlive
any	of	its
reference
captured
objects

Yes High

EXP62-CPP Do	not
access	the

Yes High

C
Checks

www.scitools.com Page	233/413

access	the

bits	of	an
object
representatio
n	that	are	not
part	of	the
object's
value
representatio
n

EXP63-CPP Do	not	rely
on	the	value
of	a	moved-
from	object

Yes Medium

FIO30-C Exclude	user
input	from
format
strings

Yes High

FIO32-C Do	not
perform
operations	on
devices	that
are	only
appropriate
for	files

No Medium

FIO34-C Distinguish
between
characters
read	from	a
file	and	EOF
or	WEOF

No High

FIO37-C Do	not
assume	that
fgets()	or
fgetws()
returns	a
nonempty
string	when
successful

Yes High

FIO38-C Do	not	copy
a	FILE	object

Yes Low

FIO39-C Do	not
alternately

Yes Low

C
Checks

www.scitools.com Page	234/413

alternately

input	and
output	from	a
stream
without	an
intervening
flush	or
positioning
call

FIO40-C Reset	strings
on	fgets()	or
fgetws()
failure

Yes Low

FIO41-C Do	not	call
getc(),
putc(),
getwc(),	or
putwc()	with
a	stream
argument
that	has	side
effects

Yes Low

FIO42-C Close	files
when	they
are	no	longer
needed

Yes Medium

FIO44-C Only	use
values	for
fsetpos()	that
are	returned
from
fgetpos()

Yes Medium

FIO45-C Avoid
TOCTOU
race
conditions
while
accessing
files

Yes High

FIO46-C Do	not
access	a
closed	file

Yes Medium

FIO47-C Use	valid Yes High

C
Checks

www.scitools.com Page	235/413

Use	valid

format
strings

FIO50-CPP Do	not
alternately
input	and
output	from	a
file	stream
without	an
intervening
positioning
call

Yes Low

FIO51-CPP Close	files
when	they
are	no	longer
needed

Yes Medium

FLP30-C Do	not	use
floating-point
variables	as
loop	counters

Yes Low

FLP32-C Prevent	or
detect
domain	and
range	errors
in	math
functions

No Medium

FLP34-C Ensure	that
floating-point
conversions
are	within
range	of	the
new	type

No Low

FLP36-C Preserve
precision
when
converting
integral
values	to
floating-point
type

No Low

FLP37-C Do	not	use
object
representatio

Yes Low

C
Checks

www.scitools.com Page	236/413

representatio

ns	to
compare
floating-point
values

HIS_01 1.	Comment
Density
(COMF)

Yes

HIS_02 2.	Number	of
Paths(PATH)

Yes

HIS_03 3.	Number	of
Goto
Statements(
GOTO)

Yes

HIS_04 4.	Cyclomatic
Complexity
(v(G))

Yes

HIS_05 5.	Calling
Functions
(CALLING)

Yes

HIS_06 6.	Called
Functions
(CALLS)

Yes

HIS_07 7.	Function
Parameters
(PARAM)

Yes

HIS_08 8.	Number	of
Staments(ST
MT)

Yes

HIS_09 9.	Number	of
call
levels(LEVEL)

Yes

HIS_10 10.	Number
of	return
points
(RETURN)

Yes

HIS_11 11.	Language
scope(VOCF)

Yes

HIS_12 12.	Recursion
(AP_CG_CYC
LE)

Yes

HIS_13 13. Yes

C
Checks

www.scitools.com Page	237/413

13.

Statements
Changed
(SCHG)

HIS_14 14.
Statements
Deleted
(SDEL)

Yes

HIS_15 15.	New
Statements
(SNEW)

Yes

HIS_16 16.	Stability
Index	(S)

Yes

HIS_17 17.	MISRA-
HIS
Violations
(NOMV)

Yes

HIS_18 18.	MISRA-
HIS
Violations	per
Rule
(NOMVPR)

Yes

INT30-C Ensure	that
unsigned
integer
operations
do	not	wrap

Yes High

INT31-C Ensure	that
unsigned
integer
operations
do	not	result
in	lost	or
misinterprete
d	data

Yes High

INT32-C Ensure	that
operations	on
signed
integers	do
not	result	in
overflow

No High

INT33-C Division	by
Zero

Yes Low

C
Checks

www.scitools.com Page	238/413

INT34-C Do	not	shift
an
expression
by	a	negative
number	of
bits	or	by
greater	than
or	equal	to
the	number
of	bits	that
exist	in	the
operand

No Low

INT35-C Use	correct
integer
precisions

No Low

INT36-C Converting	a
pointer	to
integer	or
integer	to
pointer

Yes Low

INT50-CPP Do	not	cast
to	an	out-of-
range
enumeration
value

Yes Medium

M0-1-1 A	project
shall	not
contain
unreachable
code

Yes Automated Required

M0-1-2 A	project
shall	not
contain
infeasible
paths

Yes Automated Required

M0-1-3 A	project
shall	not
contain
unused
variables

Yes Automated Required

M0-1-4 A	project
shall	not

Yes Automated Required

C
Checks

www.scitools.com Page	239/413

shall	not

contain	non-
volatile	POD
variables
having	only
one	use.

M0-1-8 All	functions
with	void
return	type
shall	have
external	side
effect(s)

Yes Automated Required

M0-1-10 Every
defined
function	shall
be	called	at
least	once.

Yes Automated Advisory

M0-2-1 Assigning
Object	to	an
Overlapping
Object

Yes Automated Required

M0-4-1 Undocument
ed	Use	of
Scaled-
integer	or
Fixed-point
Arithmetic

Yes Non-
automated

Required

M0-4-2 Undocument
ed	Use	of
Floating-
point
Arithmetic

Yes Non-
automated

Required

M2-7-1 The
character
sequence	/*
shall	not	be
used	within	a
C-style
comment.

Yes Automated Required

M2-10-1 Different
identifiers
shall	be
typographical

Yes Automated Required

C
Checks

www.scitools.com Page	240/413

typographical

ly
unambiguous

M2-13-2 Octal
constants
(other	than
zero)	and
octal	escape
sequences
(other	than
"\0")	shall
not	be	used.

Yes Automated Required

M2-13-3 A	"U"	suffix
shall	be
applied	to	all
octal	or
hexadecimal
integer
literals	of
unsigned
type.

Yes Automated Required

M2-13-4 Literal
suffixes	shall
be	upper
case

Yes Automated Required

M3-1-2 Functions
shall	not	be
declared	at
block	scope

Yes Automated Required

M3-2-1 All
declarations
of	an	object
or	function
shall	have
compatible
types

Yes Automated Required

M3-2-2 The	One
Definition
Rule

Yes Automated Required

M3-2-3 A	type,
object	or
function	that
is	used	in

Yes Automated Required

C
Checks

www.scitools.com Page	241/413

is	used	in

multiple
translation
units	shall	be
declared	in
one	and	only
one	file

M3-2-4 An	identifier
with	external
linkage	shall
have	exactly
one	definition

Yes Automated Required

M3-3-2 If	a	function
has	internal
linkage	then
all
redeclaration
s	shall
include	the
static	storage
class
specifier

Yes Automated Required

M3-4-1 Declarations
at	Lowest
Scope

Yes Automated Required

M3-9-1 The	types
used	for	an
object,	a
function
return	type,
or	a	function
parameter
shall	be
token-for-
token
identical	in	all
declarations
and	re-
declarations

Yes Automated Required

M3-9-3 The
underlying
bit
representatio

Yes Automated Required

C
Checks

www.scitools.com Page	242/413

representatio

ns	of
floating-point
values	shall
not	be	used

M4-5-1 Expressions
with	type
bool	shall	not
be	used	as
operands	to
built-in
operators
other	than
the
assignment
operator	=,
the	logical
operators
&&,	||,	!,	the
equality
operators	==
and	!=,	the
unary	&
operator,	and
the
conditional
operator

Yes Automated Required

M4-5-3 Character
Operators

Yes Automated Required

M4-10-1 NULL	shall
not	be	used
as	an	integer
value

Yes Automated Required

M4-10-2 Literal	zero
(0)	shall	not
be	used	as
the	null-
pointer-
constant.

Yes Automated Required

M5-0-2 Limited
dependence
should	be
placed	on	C+

Yes Automated Advisory

C
Checks

www.scitools.com Page	243/413

placed	on	C+

+	operator
precedence
rules	in
expressions

M5-0-3 A	cvalue
expression
shall	not	be
implicitly
converted	to
a	different
underlying
type

Yes Automated Required

M5-0-4 An	implicit
integral
conversion
shall	not
change	the
signedness
of	the
underlying
type

Yes Automated Required

M5-0-5 There	shall
be	no	implicit
floating-
integral
conversions

Yes Automated Required

M5-0-6 An	implicit
integral	or
floating-point
conversion
shall	not
reduce	the
size	of	the
underlying
type

Yes Automated Required

M5-0-7 There	shall
be	no	explicit
floating-
integral
conversions
of	a	cvalue
expression

Yes Automated Required

C
Checks

www.scitools.com Page	244/413

M5-0-8 An	explicit
integral	or
floating-point
conversion
shall	not
increase	the
size	of	the
underlying
type	of	a
cvalue
expression

Yes Automated Required

M5-0-9 An	explicit
integral
conversion
shall	not
change	the
signedness
of	the
underlying
type	of	a
cvalue
expression

Yes Automated Required

M5-0-10 If	the	bitwise
operators	~
and	<<	are
applied	to	an
operand	with
an	underlying
type	of
unsigned
char	or
unsigned
short,	the
result	shall
be
immediately
cast	to	the
underlying
type	of	the
operand

Yes Automated Required

M5-0-11 The	plain
char	type

Yes Automated Required

C
Checks

www.scitools.com Page	245/413

char	type

shall	only	be
used	for	the
storage	and
use	of
character
values

M5-0-12 Signed	char
and	unsigned
char	type
shall	only	be
used	for	the
storage	and
use	of
numeric
values

Yes Automated Required

M5-0-14 The	first
operand	of	a
conditional-
operator	shall
have	type
bool

Yes Automated Required

M5-0-15 Array
indexing	over
pointer
arithmetic

Yes Automated Required

M5-0-16 A	pointer
operand	and
any	pointer
resulting
from	pointer
arithmetic
using	that
operand	shall
both	address
elements	of
the	same
array

Yes Automated Required

M5-0-17 Subtraction
between
pointers	shall
only	be
applied	to

Yes Automated Required

C
Checks

www.scitools.com Page	246/413

applied	to

pointers	that
address
elements	of
the	same
array

M5-0-18 >,	>=,	<,	<=
shall	not	be
applied	to
objects	of
pointer	type,
except	where
they	point	to
the	same
array

Yes Automated Required

M5-0-20 Non-
constant
operands	to
a	binary
bitwise
operator	shall
have	the
same
underlying
type

Yes Automated Required

M5-0-21 Bitwise
operators
shall	only	be
applied	to
operands	of
unsigned
underlying
type

Yes Automated Required

M5-2-3 Casts	from	a
base	class	to
a	derived
class	should
not	be
performed	on
polymorphic
types

Yes Automated Advisory

M5-2-6 A	cast	shall
not	convert	a

Yes Automated Required

C
Checks

www.scitools.com Page	247/413

not	convert	a

pointer	to	a
function	to
any	other
pointer	type,
including	a
pointer	to
function	type

M5-2-8 An	object
with	integer
type	or
pointer	to
void	type
shall	not	be
converted	to
an	object
with	pointer
type.

Yes Automated Required

M5-2-9 Pointer	to
Integer	Cast

Yes Automated Required

M5-2-10 The
increment	(+
+)	and
decrement
(--)
operators
shall	not	be
mixed	with
other
operators	in
an
expression

Yes Automated Required

M5-2-11 The	comma
operator,	&&
operator	and
the	||
operator	shall
not	be
overloaded

Yes Automated Required

M5-2-12 Array	to
Pointer
Decay

Yes Automated Required

M5-3-1 Each Yes Automated Required

C
Checks

www.scitools.com Page	248/413

Each

operand	of
the	!
operator,	the
logical	&&	or
the	logical	||
operators
shall	have
type	bool

M5-3-2 Unary	Minus
Operator
Applied	to	an
Expression
with	an
Unsigned
Type

Yes Automated Required

M5-3-3 The	unary	&
operator	shall
not	be
overloaded

Yes Automated Required

M5-3-4 Evaluation	of
the	operand
to	the	sizeof
operator	shall
not	contain
side	effects

Yes Automated Required

M5-8-1 The	right
hand
operand	of	a
shift	operator
shall	lie
between	zero
and	one	less
than	the
width	in	bits
of	the
underlying
type	of	the
left	hand
operand.

Yes Partially
Automated

Required

M5-14-1 The	right
hand
operand	of	a

Yes Automated Required

C
Checks

www.scitools.com Page	249/413

operand	of	a

logical	&&,	||
operators
shall	not
contain	side
effects

M5-17-1 The	semantic
equivalence
between	a
binary
operator	and
its
assignment
operator	form
shall	be
preserved

Yes Non-
automated

Required

M5-18-1 The	comma
operator	shall
not	be	used.

Yes Automated Required

M6-2-1 Assignment
operators
shall	not	be
used	in	sub-
expressions

Yes Automated Required

M6-2-2 Floating-
point
expressions
shall	not	be
directly	or
indirectly
tested	for
equality	or
inequality

Yes Partially
Automated

Required

M6-2-3 Before
preprocessin
g,	a	null
statement
shall	only
occur	on	a
line	by	itself;
it	may	be
followed	by	a
comment,

Yes Automated Required

C
Checks

www.scitools.com Page	250/413

comment,

provided	that
the	first
character
following	the
null
statement	is
a	white-
space
character

M6-3-1 The
statement
forming	the
body	of	a
switch,	while,
do	...	while	or
for	statement
shall	be	a
compound
statement

Yes Automated Required

M6-4-1 An	if	(
condition)
construct
shall	be
followed	by	a
compound
statement.
The	else
keyword	shall
be	followed
by	either	a
compound
statement,	or
another	if
statement

Yes Automated Required

M6-4-2 All	if	and	else
if	constructs
shall	be
terminated
with	an	else
clause

Yes Automated Required

M6-4-3 Switch
Statement

Yes Automated Required

C
Checks

www.scitools.com Page	251/413

Statement

not	Well-
formed

M6-4-4 A	switch-
label	shall
only	be	used
when	the
most	closely-
enclosing
compound
statement	is
the	body	of	a
switch
statement

Yes Automated Required

M6-4-5 An
unconditional
throw	or
break
statement
shall
terminate
every	non-
empty
switch-
clause

Yes Automated Required

M6-4-6 The	final
clause	of	a
switch
statement
shall	be	the
default-
clause

Yes Automated Required

M6-4-7 The	condition
of	a	switch
statement
shall	not
have	bool
type

Yes Automated Required

M6-5-2 If	loop-
counter	is
not	modified
by	--	or	++,
then,	within

Yes Automated Required

C
Checks

www.scitools.com Page	252/413

then,	within

condition,	the
loop-counter
shall	only	be
used	as	an
operand	to
<=,	<,	>	or	>=

M6-5-3 The	loop-
counter	shall
not	be
modified
within
condition	or
statement

Yes Automated Required

M6-5-4 The	loop-
counter	shall
be	modified
by	one	of:	--,
++,	-=	n,	or
+=	n;	where	n
remains
constant	for
the	duration
of	the	loop

Yes Automated Required

M6-5-5 A	loop-
control-
variable
other	than
the	loop-
counter	shall
not	be
modified
within
condition	or
expression

Yes Automated Required

M6-5-6 A	loop-
control-
variable
other	than
the	loop-
counter
which	is
modified	in

Yes Automated Required

C
Checks

www.scitools.com Page	253/413

modified	in

statement
shall	have
type	bool

M6-6-1 Any	label
referenced
by	a	goto
statement
shall	be
declared	in
the	same
block,	or	in	a
block
enclosing	the
goto
statement

Yes Automated Required

M6-6-2 The	goto
statement
shall	jump	to
a	label
declared
later	in	the
same
function
body

Yes Automated Required

M6-6-3 Continue
Statement
Used	in	a	not
Well-formed
For	Loop

Yes Automated Required

M7-1-2 A	pointer	or
reference
parameter	in
a	function
shall	be
declared	as
pointer	to
const	or
reference	to
const	if	the
correspondin
g	object	is
not	modified

Yes Automated Required

C
Checks

www.scitools.com Page	254/413

M7-3-2 The	identifier
main	shall
not	be	used
for	a	function
other	than
the	global
function	main

Yes Automated Required

M7-3-3 There	shall
be	no
unnamed
namespaces
in	header
files.

Yes Automated Required

M7-3-4 Using-
directives
shall	not	be
used.

Yes Automated Required

M7-3-6 using-
directives
and	using-
declarations
(excluding
class	scope
or	function
scope	using-
declarations)
shall	not	be
used	in
header	files.

Yes Automated Required

M7-4-1 Assembly
Language
Code	Usage
not
Documented

Yes Non-
automated

Required

M7-4-2 Assembler
instructions
shall	only	be
introduced
using	the
asm
declaration.

Yes Automated Required

M7-4-3 Assembly Yes Automated Required

C
Checks

www.scitools.com Page	255/413

Assembly

language
shall	be
encapsulated
and	isolated.

M7-5-1 A	function
shall	not
return	a
reference	or
a	pointer	to
an	automatic
variable
(including
parameters),
defined
within	the
function.

Yes Non-
automated

Required

M7-5-2 The	address
of	an	object
with
automatic
storage	shall
not	be
assigned	to
another
object	that
may	persist
after	the	first
object	has
ceased	to
exist.

Yes Non-
automated

Required

M8-0-1 Single
Declarations

Yes Automated Required

M8-3-1 Parameters	in
an	overriding
virtual
function	shall
either	use
the	same
default
arguments	as
the	function
they	override,

Yes Automated Required

C
Checks

www.scitools.com Page	256/413

they	override,

or	else	shall
not	specify
any	default
arguments.

M8-4-2 The
identifiers
used	for	the
parameters	in
a	re-
declaration
of	a	function
shall	be
identical	to
those	in	the
declaration.

Yes Automated Required

M8-4-4 A	function
identifier
shall	either
be	used	to
call	the
function	or	it
shall	be
preceded	by
&.

Yes Automated Required

M8-5-2 Incorrect
Initializer
Lists

Yes Automated Required

M9-3-1 Const
Member
Function
Returning
Non-Const
Pointer	or
Reference

Yes Automated Required

M9-3-3 If	a	member
function	can
be	made
static	then	it
shall	be
made	static,
otherwise	if	it
can	be	made

Yes Automated Required

C
Checks

www.scitools.com Page	257/413

can	be	made

const	then	it
shall	be
made	const

M9-6-4 Bit-field
Length

Yes Automated Required

M10-1-1 Class
Derived	From
Virtual	Bases

Yes Automated Advisory

M10-1-2 A	base	class
shall	only	be
declared
virtual	if	it	is
used	in	a
diamond
hierarchy

Yes Automated Required

M10-1-3 An
accessible
base	class
shall	not	be
both	virtual
and	non-
virtual	in	the
same
hierarchy

Yes Automated Required

M10-2-1 Similiar	Entity
Names	within
Multiple
Inheritance	

Yes Automated Advisory

M10-3-3 A	virtual
function	shall
only	be
overridden
by	a	pure
virtual
function	if	it
is	itself
declared	as
pure	virtual

Yes Automated Required

M11-0-1 Member	Data
in	Non-POD
Class	not
Private

Yes Automated Required

C
Checks

www.scitools.com Page	258/413

M12-1-1 An	object's
dynamic	type
shall	not	be
used	from
the	body	of
its
constructor
or	destructor

Yes Automated Required

M14-5-3 A	copy
assignment
operator	shall
be	declared
when	there	is
a	template
assignment
operator	with
a	parameter
that	is	a
generic
parameter

Yes Automated Required

M14-6-1 In	a	class
template	with
a	dependent
base,	any
name	that
may	be	found
in	that
dependent
base	shall	be
referred	to
using	a
qualified-id
or	this->

Yes Automated Required

M15-1-1 Exception
Object

Yes Automated Required

M15-1-2 NULL	Throw Yes Automated Required
M15-1-3 Empty	Throw Yes Automated Required
M15-3-1 Exceptions

shall	be
raised	only
after	start-up
and	before

Yes Automated Required

C
Checks

www.scitools.com Page	259/413

and	before

termination
of	the
program

M15-3-3 Handlers	of	a
function-try-
block
implementati
on	of	a	class
constructor
or	destructor
shall	not
reference
non-static
members
from	this
class	or	its
bases

Yes Automated Required

M15-3-4 Each
exception
explicitly
thrown	in	the
code	shall
have	a
handler	of	a
compatible
type	in	all	call
paths	that
could	lead	to
that	point

Yes Automated Required

M15-3-6 Order	of
Catch	Blocks
with	Derived
Classes

Yes Automated Required

M16-0-1 #include
Directives
Not	Grouped
Together

Yes Automated Required

M16-0-2 Macros	shall
only	be
#define'd	or
#undef'd	in
the	global

Yes Automated Required

C
Checks

www.scitools.com Page	260/413

the	global

namespace.
M16-0-5 Function-like

Macro
Containing
Preprocessin
g	Directives

Yes Automated Required

M16-0-6 In	the
definition	of	a
function-like
macro,	each
instance	of	a
parameter
shall	be
enclosed	in
parentheses,
unless	it	is
used	as	the
operand	of	#
or	##

Yes Automated Required

M16-0-7 Undefined
macro
identifiers
shall	not	be
used	in	#if	or
#elif
preprocessor
directives,
except	as
operands	to
the	defined
operator

Yes Automated Required

M16-0-8 Invalid
Preprocessor
Directives

Yes Automated Required

M16-1-1 The	defined
preprocessor
operator	shall
only	be	used
in	one	of	the
two	standard
forms

Yes Automated Required

M16-2-3 Include Yes Automated Required

C
Checks

www.scitools.com Page	261/413

Include

guards	shall
be	provided

M16-3-1 There	shall
be	at	most
one
occurrence
of	the	#	or	##
operators	in
a	single
macro
definition

Yes Automated Required

M16-3-2 The	#	and	##
operators
should	not	be
used

Yes Automated Advisory

M17-0-2 The	names	of
standard
library
macros	and
objects	shall
not	be
reused

Yes Automated Required

M17-0-3 Standard
Library
Function
Names

Yes Automated Required

M17-0-5 The	setjmp
macro	and
the	longjmp
function	shall
not	be	used

Yes Automated Required

M18-0-3 <cstdlib>
Library
Functions

Yes Automated Required

M18-0-4 Time
Handling
Functions	of
<ctime>

Yes Automated Required

M18-0-5 Unbounded
Functions	of
<cstring>

Yes Automated Required

M18-2-1 The	macro Yes Automated Required

C
Checks

www.scitools.com Page	262/413

The	macro

offsetof	shall
not	be	used

M18-7-1 The	signal
handling
facilities	of
<csignal>
shall	not	be
used

Yes Automated Required

M19-3-1 The	error
indicator
errno	shall
not	be	used

Yes Automated Required

M27-0-1 The	stream
input/output
library
<cstdio>
shall	not	be
used

Yes Automated Required

MEM30-C Do	not
access	freed
memory

No High

MEM31-C Free
dynamically
allocated
memory
when	no
longer
needed

Yes Medium

MEM33-C Allocate	and
copy
structures
containing	a
flexible	array
member
dynamically

Yes Low

MEM34-C Only	free
memory
allocated
dynamically

Yes High

MEM35-C Allocate
sufficient
memory	for

Yes High

C
Checks

www.scitools.com Page	263/413

memory	for

an	object
MEM36-C Do	not

modify	the
alignment	of
objects	by
calling
realloc()

No Low

MEM50-CPP Do	not
access	freed
memory

No High

MEM51-CPP Properly
deallocate
dynamically
allocated
resources

Yes High

MEM52-CPP Detect	and
handle
memory
allocation
errors

Yes High

MEM53-CPP Explicitly
construct
and	destruct
objects	when
manually
managing
object
lifetime

No High

MEM57-CPP Avoid	using
default
operator	new
for	over-
aligned	types

Yes Medium

METRIC_00 Program	Unit
Call	Count

Yes

METRIC_01 Program	Unit
Callby	Count

Yes

METRIC_02 Program	Unit
Comment	to
Code	Ratio

Yes

METRIC_03 Program	Unit
Cyclomatic

Yes

C
Checks

www.scitools.com Page	264/413

Cyclomatic

Complexity
METRIC_04 Program	Unit

Max	Length
Yes

METRIC_05 Program	Unit
Max	Nesting
Depth

Yes

METRIC_06 Program	Unit
Parameters
Count

Yes

METRIC_07 Program	Unit
Path	Count

Yes

METRIC_08 Program	Unit
Statement
Count

Yes

METRIC_09 Coupling
Between
Object
Classes

Yes

METRIC_11 Depth	of
Inheritance
Tree

Yes

METRIC_12 Lack	of
Cohesion	in
Methods

Yes

METRIC_13 Maintainabilit
y	Index

Yes

MISRA04_2.1 2.1	Assembly
language
shall	be
encapsulated
and	isolated.

Yes Required

MISRA04_2.
2

2.2	only	use	/
*	comments

Yes Required

MISRA04_2.
3

2.3	The
character
sequence	/*
shall	not	be
used	within	a
comment.

Yes Required

MISRA04_2.
4

2.4	Sections
of	code

Yes Advisory

C
Checks

www.scitools.com Page	265/413

of	code

should	not	be
"commented
out"

MISRA04_4.1 4.1	Only
those	escape
sequences
that	are
defined	in
the	ISO	C
standard
shall	be	used

Yes Required

MISRA04_4.
2

4.2	Trigraphs
shall	not	be
used

Yes Required

MISRA04_5.1 5.1	Identifiers
shall	not	rely
on	the
significance
of	more	than
31	characters

Yes Required

MISRA04_5.
2

5.2
Shadowed
Identifiers

Yes Required

MISRA04_5.
3

5.3	A	typedef
name	shall
be	a	unique
identifier.

Yes Required

MISRA04_5.
4

5.4	A	tag
name	shall
be	a	unique
identifier

Yes Required

MISRA04_5.
5

5.5	No	object
or	function
identifier	with
static	storage
duration
should	be
reused

Yes Advisory

MISRA04_5.
6

5.6	No
identifier	in
one	name
space	should

Yes Advisory

C
Checks

www.scitools.com Page	266/413

space	should

have	the
same	spelling
as	an
identifier	in
another
name	space.

MISRA04_5.75.7	No
identifier
name	should
be	reused

Yes Advisory

MISRA04_6.1 6.1	The	plain
char	type
shall	only	be
used	for	the
storage	and
use	of
character
values

Yes Required

MISRA04_6.
2

6.2	Signed
char	and
unsigned
char	type
shall	only	be
used	for	the
storage	and
use	of
numeric
values

Yes Required

MISRA04_6.
3

6.3	Typedefs
that	indicate
size	and
signedness
should	be
used	in	place
of	the	basic
numerical
types

Yes Advisory

MISRA04_6.
4

6.4	Bit	fields
shall	only	be
defined	to	be
of	type
unsigned	int

Yes Required

C
Checks

www.scitools.com Page	267/413

unsigned	int

or	signed	int.
MISRA04_6.
5

6.5	Bit	fields
of	signed
type	shall	be
at	least	2	bits
long.(Fuzzy
parser)

Yes Required

MISRA04_7.1 7.1	Octal
constants
(other	than
zero)	and
octal	escape
sequences
shall	not	be
used.

Yes Required

MISRA04_8.
3

8.3	For	each
function
parameter
the	type
given	in	the
declaration
and	definition
shall	be
identical,	and
the	return
types	shall
also	be
identical

Yes Required

MISRA04_8.
5

8.5	No
definitions	of
objects	or
functions	in	a
header	file

Yes Required

MISRA04_8.
6

8.6	Functions
shall	be
declared	at
file	scope

Yes Required

MISRA04_8.78.7	Objects
shall	be	local
if	only
accessed
from	one

Yes Required

C
Checks

www.scitools.com Page	268/413

from	one

function
MISRA04_8.
8

8.8	An
external
object	or
function	shall
be	declared
in	one	and
only	one	file

Yes Required

MISRA04_8.
9

8.9	An
identifier	with
external
linkage	shall
have	exactly
one	external
definition

Yes Required

MISRA04_8.1
0

8.10	prefer
internal
linkage	over
external
whenever
possible

Yes Required

MISRA04_8.1
1

8.11	Use	the
static
keyword	for
internal
linkage

Yes Required

MISRA04_8.1
2

8.12	When	an
array	is
declared	with
external
linkage,	its
size	shall	be
stated
explicitly	or
defined
implicitly	by
initialisation

Yes Required

MISRA04_9.
3

9.3	=
construct	in
enumerator
list	shall	only
be	used	on

Yes Required

C
Checks

www.scitools.com Page	269/413

be	used	on

either	the
first	item
alone,	or	all
items
explicitly.

MISRA04_10.
5

10.5	If	the
bitwise
operators	~
and	<<	are
applied	to	an
operand	with
an	underlying
type	of
unsigned
char	or
unsigned
short,	the
result	shall
be
immediately
cast	to	the
underlying
type	of	the
operand

Yes Required

MISRA04_10.
6

10.6	A	U
suffix	shall
be	applied	to
all	constants
of	unsigned
type

Yes Required

MISRA04_12.
6

12.6	The
operands	of
logical
operators
(&&,	||	and	!)
should	be
effectively
Boolean.
Expressions
that	are
effectively
Boolean

Yes Advisory

C
Checks

www.scitools.com Page	270/413

Boolean

should	not	be
used	as
operands	to
operators
other	than
(&&,	||,	!,	=,
==,	!=	and	?:)

MISRA04_12.
8

12.8	The
right-hand
operand	of	a
shift	operator
shall	lie
between	zero
and	one	less
than	the
width	in	bits
of	the
underlying
type	of	the
left-hand
operand.

Yes Required

MISRA04_12.
12

12.12	The
underlying
bit
representatio
ns	of
floating-point
values	shall
not	be	used

Yes Required

MISRA04_12.
13

12.13	The
increment	(+
+)	and
decrement
(--)
operators
should	not	be
mixed	with
other
operators	in
an
expression

Yes Advisory

MISRA04_13. 13.3 Yes Required

C
Checks

www.scitools.com Page	271/413

MISRA04_13.

3

13.3

Floating-
point
expressions
shall	not	be
tested	for
equality	or
inequality

MISRA04_13.
6

13.6	Numeric
variables
being	used
within	a	for
loop	for
iteration
counting
shall	not	be
modified	in
the	body	of
the	loop

Yes Required

MISRA04_14.
1

14.1	There
shall	be	no
unreachable
code

Yes Required

MISRA04_14.
3

14.3	Before
preprocessin
g,	a	null
statement
shall	only
occur	on	a
line	by	itself;
it	may	be
followed	by	a
comment
provided	that
the	first
character
following	the
null
statement	is
a	white-
space
character

Yes Required

MISRA04_14. 14.4	The Yes Required

C
Checks

www.scitools.com Page	272/413

MISRA04_14.

4

14.4	The

goto
statement
shall	not	be
used

MISRA04_14.
5

14.5	The
continue
statement
shall	not	be
used

Yes Required

MISRA04_14.
6

14.6	For	any
iteration
statement
there	shall	be
at	most	one
break
statement
used	for	loop
termination

Yes Required

MISRA04_14.
7

14.7	A
function	shall
have	a	single
point	of	exit
at	the	end	of
the	function

Yes Required

MISRA04_14.
8

14.8	The
statement
forming	the
body	of	a
switch,	while,
do	...	while	or
for	statement
shall	be	a
compound
statement

Yes Required

MISRA04_14.
9

14.9	An	if
(expression)
construct
shall	be
followed	by	a
compound
statement.
The	else

Yes Required

C
Checks

www.scitools.com Page	273/413

The	else

keyword	shall
be	followed
by	either	a
compound
statement,	or
another	if
statement

MISRA04_14.
10

14.10	All	if	...
else	if
constructs
shall	be
terminated
with	an	else
clause

Yes Required

MISRA04_15.
1

15.1	A	switch
label	shall
only	be	used
when	the
most	closely-
enclosing
compound
statement	is
the	body	of	a
switch
statement

Yes Required

MISRA04_15.
2

15.2	An
unconditional
break
statement
shall
terminate
every	non-
empty	switch
clause

Yes Required

MISRA04_15.
3

15.3	The	final
clause	of	a
switch
statement
shall	be	the
default
clause

Yes Required

MISRA04_15. 15.5	Every Yes Required

C
Checks

www.scitools.com Page	274/413

MISRA04_15.

5

15.5	Every

switch
statement
shall	have	at
least	one
case	clause

MISRA04_16.
1

16.1
Functions
shall	not	be
defined	with
variable
numbers	of
arguments.

Yes Required

MISRA04_16.
2

16.2
Functions
shall	not	call
themselves,
either
directly	or
indirectly.

Yes Required

MISRA04_16.
3

16.3	All
prototype
parameters
must	have	an
identifier.

Yes Required

MISRA04_16.
4

16.4	use	the
same
identifier	in
definition	and
declaration
of	functions.

Yes Required

MISRA04_16.
5

16.5
Functions
with	no
parameters
need	explicit
void	keyword

Yes Required

MISRA04_16.
8

16.8	Always
return	a	value
in	non-void
functions

Yes Required

MISRA04_16.
9

16.9	A
function

Yes Required

C
Checks

www.scitools.com Page	275/413

function

identifier
shall	only	be
used	with
either	a
preceding	&,
or	with	a
parenthesise
d	parameter
list,	which
may	be
empty

MISRA04_17.
3

17.3	>,	>=,	<,
<=	shall	not
be	applied	to
objects	of
pointer	type,
except	where
they	point	to
the	same
array

Yes Required

MISRA04_17.
5

17.5	No	more
than	2	levels
of	pointer
indirection

Yes Advisory

MISRA04_17.
6

17.6	The
address	of	an
object	with
automatic
storage	shall
not	be
assigned	to
another
object	that
may	persist
after	the	first
object	has
ceased	to
exist.

Yes Required

MISRA04_18.
4

18.4	Unions
shall	not	be
used

Yes Required

MISRA04_19. 19.1	#include Yes Advisory

C
Checks

www.scitools.com Page	276/413

MISRA04_19.

1

19.1	#include

statements	in
a	file	should
only	be
preceded	by
other
preprocessor
directives	or
comments

MISRA04_19.
2

19.2	Non-
standard
characters
should	not
occur	in
header	file
names	in
#include
directives

Yes Advisory

MISRA04_19.
3

19.3	The
#include
directive
shall	be
followed	by
either	a
<filename>
or	"filename"
sequence

Yes Required

MISRA04_19.
5

19.5	Macros
shall	not	be
#define'd	or
#undef'd
within	a
block

Yes Required

MISRA04_19.
6

19.6	#undef
shall	not	be
used

Yes Required

MISRA04_19.
7

19.7	A
function
should	be
used	in
preference	to
a	function-
like	macro

Yes Advisory

C
Checks

www.scitools.com Page	277/413

MISRA04_19.
9

19.9
Arguments	to
a	function-
like	macro
shall	not
contain
tokens	that
look	like
preprocessin
g	directives

Yes Required

MISRA04_19.
10

19.10	In	the
definition	of	a
function-like
macro,	each
instance	of	a
parameter
shall	be
enclosed	in
parentheses,
unless	it	is
used	as	the
operand	of	#
or	##

Yes Required

MISRA04_19.
11

19.11	All
macro
identifiers	in
preprocessor
directives
shall	be
defined
before	use,
except	in
#ifdef	and
#ifndef
preprocessor
directives
and	the
defined()
operator

No Required

MISRA04_19.
12

19.12	There
shall	be	at
most	one

Yes Required

C
Checks

www.scitools.com Page	278/413

most	one

occurrence
of	the	#	or	##
operators	in
a	single
macro
definition

MISRA04_19.
13

19.12	The	#
and	##
operators
should	not	be
used

Yes Advisory

MISRA04_19.
14

19.14	The
defined
preprocessor
operator	shall
only	be	used
in	one	of	the
two	standard
forms

Yes Required

MISRA04_19.
15

19.15
Precautions
shall	be
taken	in
order	to
prevent	the
contents	of	a
header	file
being
included
twice

Yes Required

MISRA04_19.
17

20.14	All
#else,	#elif
and	#endif
preprocessor
directives
shall	reside	in
the	same	file
as	the	#if,
#ifdef	or
#ifndef
directive	to
which	they

Yes Required

C
Checks

www.scitools.com Page	279/413

which	they

are	related
MISRA04_20.
1

20.1
Reserved
identifiers,
macros	and
functions	in
the	standard
library	shall
not	be
defined,
redefined	or
undefined

Yes Required

MISRA04_20
.2

20.2	The
names	of
standard
library
macros	and
objects	shall
not	be
reused

Yes Required

MISRA04_20
.4

20.4
Dynamic
heap	memory
allocation
shall	not	be
used

Yes Required

MISRA04_20
.5

20.5	The
error
indicator
"errno"	shall
not	be	used

Yes Required

MISRA04_20
.6

20.6	The
macro
offsetof,	in
library
<stddef.h>,
shall	not	be
used

Yes Required

MISRA04_20.
7

20.7	The
setjmp	macro
and	the
longjmp

Yes Required

C
Checks

www.scitools.com Page	280/413

longjmp

function	shall
not	be	used

MISRA04_20
.8

20.8	The
signal
handling
facilities	of
<signal.h>
shall	not	be
used

Yes Required

MISRA04_20
.9

20.9	The
input	output
library
<stdio.h>
shall	not	be
used	in
production
code

Yes Required

MISRA04_20.
10

20.10	The
library
functions
atof,	atoi	and
atol	from
library
<stdlib.h>
shall	not	be
used

Yes Required

MISRA04_20.
11

20.11	The
library
functions
abort,	exit,
getenv	and
system	from
library
<stdlib.h>
shall	not	be
used

Yes Required

MISRA04_20.
12

20.12	The
time	handling
functions	of
library
<time.h>
shall	not	be

Yes Required

C
Checks

www.scitools.com Page	281/413

shall	not	be

used
MISRA04_21.
1

21.1
Minimisation
of	run-time
failures	shall
be	ensured
by	the	use	of
at	least	one
of:	(a)	static
analysis
tools/
techniques;
(b)	dynamic
analysis
tools/
techniques;
(c)	explicit
coding	of
checks	to
handle	run-
time	faults.

Yes Required

MISRA08_0-
1-1

0-1-1	A
project	shall
not	contain
unreachable
code

Yes Required

MISRA08_0-
1-2

0-1-2
Infeasible
Paths

Yes Required

MISRA08_0-
1-3

0-1-3	A
project	shall
not	contain
unused
variables

Yes Required

MISRA08_0-
1-4

0-1-4	A
project	shall
not	contain
non-volatile
POD
variables
having	only
one	use.

Yes Required

C
Checks

www.scitools.com Page	282/413

MISRA08_0-
1-5

0-1-5	A
project	shall
not	contain
unused	type
declarations

Yes Required

MISRA08_0-
1-7

0-1-7	The
value
returned	by	a
function
having	a	non-
void	return
type	that	is
not	an
overloaded
operator	shall
always	be
used

Yes Required

MISRA08_0-
1-8

0-1-8	All
functions
with	void
return	type
shall	have
external	side
effect(s)

Yes Required

MISRA08_0-
1-10

0-1-10	All
defined
functions
called

Yes Required

MISRA08_0-
1-11

0-1-11
Unused
Parameters	in
Non-virtual
Functions

Yes Required

MISRA08_0-
1-12

0-1-12	There
shall	be	no
unused
parameters
(named	or
unnamed)	in
the	set	of
parameters
for	a	virtual

Yes Required

C
Checks

www.scitools.com Page	283/413

for	a	virtual

function	and
all	the
functions
that	override
it

MISRA08_2-
3-1

2-3-1
Trigraphs
shall	not	be
used

Yes Required

MISRA08_2-
5-1

2-5-1
Digraphs
shall	not	be
used

Yes Advisory

MISRA08_2-
7-1

2-7-1	The
character
sequence	/*
shall	not	be
used	within	a
C-style
comment.

Yes Required

MISRA08_2-
7-2

2-7-2
Sections	of
code	shall
not	be
"commented
out"

Yes Required

MISRA08_2-
10-1

2-10-1
Different
identifiers
shall	be
typographical
ly
unambiguous

Yes Required

MISRA08_2-
10-2

2-10-2
Shadowed
Identifiers

Yes Required

MISRA08_2-
10-3

2-10-3	A
typedef
name	shall
be	a	unique
identifier

Yes Required

MISRA08_2- 2-10-4	A Yes Required

C
Checks

www.scitools.com Page	284/413

MISRA08_2-

10-4

2-10-4	A

class,	union
or	enum
name
(including
qualification,
if	any)	shall
be	a	unique
identifier

MISRA08_2-
10-5

2-10-5	The
identifier
name	of	a
non-member
object	or
function	with
static	storage
duration
should	not	be
reused

Yes Advisory

MISRA08_2-
13-1

2-13-1
escape
sequences
are
standardized

Yes Required

MISRA08_2-
13-2

2-13-2	Octal
constants
(other	than
zero)	and
octal	escape
sequences
(other	than
"\0")	shall
not	be	used.

Yes Required

MISRA08_2-
13-3

2-13-3	A	"U"
suffix	shall
be	applied	to
all	octal	or
hexadecimal
integer
literals	of
unsigned
type.

Yes Required

MISRA08_2- 2-13-4	LiteralYes Required

C
Checks

www.scitools.com Page	285/413

MISRA08_2-

13-4

2-13-4	Literal

suffixes	shall
be	upper
case

MISRA08_2-
13-5

2-13-5
Narrow	and
wide	string
literals	shall
not	be
concatenated

Yes Required

MISRA08_3-
1-1

3-1-1	It	shall
be	possible
to	include
any	header
file	in
multiple
translation
units	without
violating	the
One
Definition
Rule

Yes Required

MISRA08_3-
1-2

3-1-2
Functions
shall	not	be
declared	at
block	scope

Yes Required

MISRA08_3-
1-3

3-1-3	When
an	array	is
declared,	its
size	shall
either	be
stated
explicitly	or
defined
implicitly	by
initialization

Yes Required

MISRA08_3-
2-1

3-2-1	All
declarations
of	an	object
or	function
shall	have
compatible

Yes Required

C
Checks

www.scitools.com Page	286/413

compatible

types
MISRA08_3-
2-2

3-2-2	The
One
Definition
Rule

Yes Required

MISRA08_3-
2-3

3-2-3	A	type,
object	or
function	that
is	used	in
multiple
translation
units	shall	be
declared	in
one	and	only
one	file

Yes Required

MISRA08_3-
2-4

3-2-4	An
identifier	with
external
linkage	shall
have	exactly
one	definition

Yes Required

MISRA08_3-
3-1

3-3-1
Objects	or
functions
with	external
linkage	shall
be	declared
in	a	header
file

Yes Required

MISRA08_3-
3-2

3-3-2	If	a
function	has
internal
linkage	then
all
redeclaration
s	shall
include	the
static	storage
class
specifier

Yes Required

MISRA08_3-
4-1

3-4-1
Declarations

Yes Required

C
Checks

www.scitools.com Page	287/413

Declarations

at	Lowest
Scope

MISRA08_3-
9-1

3-9-1	The
types	used
for	an	object,
a	function
return	type,
or	a	function
parameter
shall	be
token-for-
token
identical	in	all
declarations
and	re-
declarations

Yes Required

MISRA08_3-
9-2

3-9-2
Typedefs	that
indicate	size
and
signedness
should	be
used	in	place
of	the	basic
numerical
types

Yes Advisory

MISRA08_3-
9-3

3-9-3	The
underlying
bit
representatio
ns	of
floating-point
values	shall
not	be	used

Yes Required

MISRA08_4-
5-1

4-5-1
Expressions
with	type
bool	shall	not
be	used	as
operands	to
built-in
operators

Yes Required

C
Checks

www.scitools.com Page	288/413

operators

other	than
the
assignment
operator	=,
the	logical
operators
&&,	||,	!,	the
equality
operators	==
and	!=,	the
unary	&
operator,	and
the
conditional
operator

MISRA08_4-
5-2

4-5-2
Expressions
with	type
enum	shall
not	be	used
as	operands
to	built-in
operators
other	than
the	subscript
operator	[],
the
assignment
operator	=,
the	equality
operators	==
and	!=,	the
unary	&
operator,	and
the	relational
operators	<,
<=,	>,	>=

Yes Required

MISRA08_4-
5-3

4-5-3
Character
Operators

Yes Required

MISRA08_4-
10-1

4-10-1	NULL
shall	not	be

Yes Required

C
Checks

www.scitools.com Page	289/413

shall	not	be

used	as	an
integer	value

MISRA08_4-
10-2

4-10-2	Literal
zero	(0)	shall
not	be	used
as	the	null-
pointer-
constant.

Yes Required

MISRA08_5-
0-2

5-0-2
Limited
dependence
should	be
placed	on	C+
+	operator
precedence
rules	in
expressions

Yes Advisory

MISRA08_5-
0-3

5-0-3	A
cvalue
expression
shall	not	be
implicitly
converted	to
a	different
underlying
type

Yes Required

MISRA08_5-
0-4

5-0-4	An
implicit
integral
conversion
shall	not
change	the
signedness
of	the
underlying
type

Yes Required

MISRA08_5-
0-5

5-0-5	There
shall	be	no
implicit
floating-
integral
conversions

Yes Required

C
Checks

www.scitools.com Page	290/413

MISRA08_5-
0-6

5-0-6	An
implicit
integral	or
floating-point
conversion
shall	not
reduce	the
size	of	the
underlying
type

Yes Required

MISRA08_5-
0-7

5-0-7	There
shall	be	no
explicit
floating-
integral
conversions
of	a	cvalue
expression

Yes Required

MISRA08_5-
0-8

5-0-8	An
explicit
integral	or
floating-point
conversion
shall	not
increase	the
size	of	the
underlying
type	of	a
cvalue
expression

Yes Required

MISRA08_5-
0-9

5-0-9	An
explicit
integral
conversion
shall	not
change	the
signedness
of	the
underlying
type	of	a
cvalue
expression

Yes Required

C
Checks

www.scitools.com Page	291/413

MISRA08_5-
0-10

5-0-10	If	the
bitwise
operators	~
and	<<	are
applied	to	an
operand	with
an	underlying
type	of
unsigned
char	or
unsigned
short,	the
result	shall
be
immediately
cast	to	the
underlying
type	of	the
operand

Yes Required

MISRA08_5-
0-11

5-0-11	The
plain	char
type	shall
only	be	used
for	the
storage	and
use	of
character
values

Yes Required

MISRA08_5-
0-12

5-0-12
Signed	char
and	unsigned
char	type
shall	only	be
used	for	the
storage	and
use	of
numeric
values

Yes Required

MISRA08_5-
0-14

5-0-14	The
first	operand
of	a
conditional-

Yes Required

C
Checks

www.scitools.com Page	292/413

conditional-

operator	shall
have	type
bool

MISRA08_5-
0-17

5-0-17
Subtraction
between
pointers	shall
only	be
applied	to
pointers	that
address
elements	of
the	same
array

Yes Required

MISRA08_5-
0-18

5-0-18	>,	>=,
<,	<=	shall
not	be
applied	to
objects	of
pointer	type,
except	where
they	point	to
the	same
array

Yes Required

MISRA08_5-
0-19

5-0-19	No
more	than	2
levels	of
pointer
indirection

Yes Required

MISRA08_5-
0-20

5-0-20	Non-
constant
operands	to
a	binary
bitwise
operator	shall
have	the
same
underlying
type

Yes Required

MISRA08_5-
0-21

5-0-21
Bitwise
operators

Yes Required

C
Checks

www.scitools.com Page	293/413

operators

shall	only	be
applied	to
operands	of
unsigned
underlying
type

MISRA08_5-
2-3

5-2-3	Casts
from	a	base
class	to	a
derived	class
should	not	be
performed	on
polymorphic
types

Yes Advisory

MISRA08_5-
2-5

5-2-5	A	cast
shall	not
remove	any
const	or
volatile
qualification
from	the	type
of	a	pointer
or	reference

Yes Required

MISRA08_5-
2-6

5-2-6	A	cast
shall	not
convert	a
pointer	to	a
function	to
any	other
pointer	type,
including	a
pointer	to
function	type

Yes Required

MISRA08_5-
2-8

5-2-8	An
object	with
integer	type
or	pointer	to
void	type
shall	not	be
converted	to
an	object
with	pointer

Yes Required

C
Checks

www.scitools.com Page	294/413

with	pointer

type.
MISRA08_5-
2-9

5-2-9	Pointer
to	Integer
Cast

Yes Advisory

MISRA08_5-
2-10

5-2-10	The
increment	(+
+)	and
decrement
(--)
operators
shall	not	be
mixed	with
other
operators	in
an
expression

Yes Advisory

MISRA08_5-
2-11

5-2-11	The
comma
operator,	&&
operator	and
the	||
operator	shall
not	be
overloaded

Yes Required

MISRA08_5-
2-12

5-2-12	Array
to	Pointer
Decay

Yes Required

MISRA08_5-
3-1

5-3-1	Each
operand	of
the	!
operator,	the
logical	&&	or
the	logical	||
operators
shall	have
type	bool

Yes Required

MISRA08_5-
3-3

5-3-3	The
unary	&
operator	shall
not	be
overloaded

Yes Required

MISRA08_5- 5-3-4 Yes Required

C
Checks

www.scitools.com Page	295/413

MISRA08_5-

3-4

5-3-4

Evaluation	of
the	operand
to	the	sizeof
operator	shall
not	contain
side	effects

MISRA08_5-
8-1

5-8-1	The
right	hand
operand	of	a
shift	operator
shall	lie
between	zero
and	one	less
than	the
width	in	bits
of	the
underlying
type	of	the
left	hand
operand.

Yes Required

MISRA08_6-
2-2

6-2-2
Floating-
point
expressions
shall	not	be
directly	or
indirectly
tested	for
equality	or
inequality

Yes Required

MISRA08_6-
2-3

6-2-3	Before
preprocessin
g,	a	null
statement
shall	only
occur	on	a
line	by	itself;
it	may	be
followed	by	a
comment,
provided	that
the	first

Yes Required

C
Checks

www.scitools.com Page	296/413

the	first

character
following	the
null
statement	is
a	white-
space
character

MISRA08_6-
3-1

6-3-1	The
statement
forming	the
body	of	a
switch,	while,
do	...	while	or
for	statement
shall	be	a
compound
statement

Yes Required

MISRA08_6-
4-1

6-4-1	An	if	(
condition)
construct
shall	be
followed	by	a
compound
statement.
The	else
keyword	shall
be	followed
by	either	a
compound
statement,	or
another	if
statement

Yes Required

MISRA08_6-
4-2

6-4-2	All	if	...
else	if
constructs
shall	be
terminated
with	an	else
clause

Yes Required

MISRA08_6-
4-4

6-4-4	A
switch-label
shall	only	be

Yes Required

C
Checks

www.scitools.com Page	297/413

shall	only	be

used	when
the	most
closely-
enclosing
compound
statement	is
the	body	of	a
switch
statement

MISRA08_6-
4-5

6-4-5	An
unconditional
throw	or
break
statement
shall
terminate
every	non-
empty
switch-
clause

Yes Required

MISRA08_6-
4-6

6-4-6	The
final	clause
of	a	switch
statement
shall	be	the
default-
clause

Yes Required

MISRA08_6-
4-8

6-4-8	Every
switch
statement
shall	have	at
least	one
case	clause

Yes Required

MISRA08_6-
5-1

6-5-1	A	for
loop	shall
contain	a
single	loop-
counter
which	shall
not	have
floating-point
type

Yes Required

C
Checks

www.scitools.com Page	298/413

MISRA08_6-
5-2

6-5-2	If
loop-counter
is	not
modified	by
--	or	++,
then,	within
condition,	the
loop-counter
shall	only	be
used	as	an
operand	to
<=,	<,	>	or	>=

Yes Required

MISRA08_6-
5-3

6-5-3	The
loop-counter
shall	not	be
modified
within
condition	or
statement

Yes Required

MISRA08_6-
5-4

6-5-4	The
loop-counter
shall	be
modified	by
one	of:	--,	+
+,	-=	n,	or	+=
n;	where	n
remains
constant	for
the	duration
of	the	loop

Yes Required

MISRA08_6-
5-5

6-5-5	A
loop-control-
variable
other	than
the	loop-
counter	shall
not	be
modified
within
condition	or
expression

Yes Required

MISRA08_6- 6-5-6	A Yes Required

C
Checks

www.scitools.com Page	299/413

MISRA08_6-

5-6

6-5-6	A

loop-control-
variable
other	than
the	loop-
counter
which	is
modified	in
statement
shall	have
type	bool

MISRA08_6-
6-1

6-6-1	Any
label
referenced
by	a	goto
statement
shall	be
declared	in
the	same
block,	or	in	a
block
enclosing	the
goto
statement

Yes Required

MISRA08_6-
6-2

6-6-2	The
goto
statement
shall	jump	to
a	label
declared
later	in	the
same
function
body

Yes Required

MISRA08_6-
6-4

6-6-4	For
any	iteration
statement
there	shall	be
no	more	than
one	break	or
goto
statement
used	for	loop

Yes Required

C
Checks

www.scitools.com Page	300/413

used	for	loop

termination
MISRA08_6-
6-5

6-6-5	A
function	shall
have	a	single
point	of	exit
at	the	end	of
the	function

Yes Required

MISRA08_7-1
-1

7-1-1	A
variable
which	is	not
modified
shall	be
const
qualified

Yes Required

MISRA08_7-1
-2

7-1-2	A
pointer	or
reference
parameter	in
a	function
shall	be
declared	as
pointer	to
const	or
reference	to
const	if	the
correspondin
g	object	is
not	modified

Yes Required

MISRA08_7-
2-1

7-2-1	An
expression
with	enum
underlying
type	shall
only	have
values
correspondin
g	to	the
enumerators
of	the
enumeration

Yes Required

MISRA08_7-
3-2

7-3-2	The
identifier

Yes Required

C
Checks

www.scitools.com Page	301/413

identifier

main	shall
not	be	used
for	a	function
other	than
the	global
function	main

MISRA08_7-
3-3

7-3-3	There
shall	be	no
unnamed
namespaces
in	header
files.

Yes Required

MISRA08_7-
3-4

7-3-4	Using-
directives
shall	not	be
used.

Yes Required

MISRA08_7-
3-5

7-3-5
Multiple
declarations
for	an
identifier	in
the	same
namespace
shall	not
straddle	a
using-
declaration
for	that
identifier

Yes Required

MISRA08_7-
3-6

7-3-6	using-
directives
and	using-
declarations
(excluding
class	scope
or	function
scope	using-
declarations)
shall	not	be
used	in
header	files.

Yes Required

MISRA08_7- 7-4-2 Yes Required

C
Checks

www.scitools.com Page	302/413

MISRA08_7-

4-2

7-4-2

Assembler
instructions
shall	only	be
introduced
using	the
asm
declaration.

MISRA08_7-
4-3

7-4-3
Assembly
language
shall	be
encapsulated
and	isolated.

Yes Required

MISRA08_7-
5-1

7-5-1	A
function	shall
not	return	a
reference	or
a	pointer	to
an	automatic
variable
(including
parameters),
defined
within	the
function.

Yes Required

MISRA08_7-
5-2

7-5-2	The
address	of	an
object	with
automatic
storage	shall
not	be
assigned	to
another
object	that
may	persist
after	the	first
object	has
ceased	to
exist.

Yes Required

MISRA08_7-
5-4

7-5-4
Functions
should	not

Yes Advisory

C
Checks

www.scitools.com Page	303/413

should	not

call
themselves,
either
directly	or
indirectly.

MISRA08_8-
0-1

8-0-1	Single
Declarations

Yes Required

MISRA08_8-
3-1

8-3-1
Parameters	in
an	overriding
virtual
function	shall
either	use
the	same
default
arguments	as
the	function
they	override,
or	else	shall
not	specify
any	default
arguments.

Yes Required

MISRA08_8-
4-1

8-4-1
Functions
shall	not	be
defined	using
the	ellipsis
notation

Yes Required

MISRA08_8-
4-2

8-4-2	Use
the	same
identifier	in
definition	and
declaration
of	functions.

Yes Required

MISRA08_8-
4-3

8-4-3	Always
return	a	value
in	non-void
functions

Yes Required

MISRA08_8-
4-4

8-4-4	A
function
identifier
shall	either

Yes Required

C
Checks

www.scitools.com Page	304/413

shall	either

be	used	to
call	the
function	or	it
shall	be
preceded	by
&

MISRA08_8-
5-1

8-5-1	All
variables
shall	have	a
defined	value
before	they
are	used

Yes Required

MISRA08_8-
5-2

8-5-2
Incorrect
Initializer
Lists

Yes Automated Required

MISRA08_8-
5-3

8-5-3	The	=
construct	in
enumerator
list	shall	only
be	used	on
either	the
first	item
alone,	or	all
items
explicitly.

Yes Required

MISRA08_9-
3-1

9-3-1	Const
member
functions
shall	not
return	non-
const
pointers	or
references	to
class-data

Yes Required

MISRA08_9-
3-2

9-3-2
Member
functions
shall	not
return	non-
const
handles	to

Yes Required

C
Checks

www.scitools.com Page	305/413

handles	to

class-data
MISRA08_9-
3-3

9-3-3	If	a
member
function	can
be	made
static	then	it
shall	be
made	static,
otherwise	if	it
can	be	made
const	then	it
shall	be
made	const

Yes Required

MISRA08_9-
5-1

9-5-1	Unions
shall	not	be
used

Yes Required

MISRA08_9-
6-2

9-6-2	Bool,
Unsigned,	or
Signed	Bit-
fields

Yes Required

MISRA08_9-
6-3

9-6-3	Enum
Bit-fields

Yes Required

MISRA08_9-
6-4

9-6-4	(Fuzzy
parser)
Named	bit-
fields	with
signed
integer	type
shall	have	a
length	of
more	than
one	bit

Yes Required

MISRA08_10
-1-1

10-1-1
Classes
should	not	be
derived	from
virtual	bases

Yes Advisory

MISRA08_10
-1-2

10-1-2	A
base	class
shall	only	be
declared
virtual	if	it	is

Yes Required

C
Checks

www.scitools.com Page	306/413

virtual	if	it	is

used	in	a
diamond
hierarchy

MISRA08_10
-1-3

10-1-3	An
accessible
base	class
shall	not	be
both	virtual
and	non-
virtual	in	the
same
hierarchy

Yes Required

MISRA08_10
-3-1

10-3-1	There
shall	be	no
more	than
one	definition
of	each
virtual
function	on
each	path
through	the
inheritance
hierarchy

Yes Required

MISRA08_10
-3-2

10-3-2	Each
overriding
virtual
function	shall
be	declared
with	the
virtual
keyword.

Yes Required

MISRA08_10
-3-3

10-3-3	A
virtual
function	shall
only	be
overridden
by	a	pure
virtual
function	if	it
is	itself
declared	as
pure	virtual

Yes Required

C
Checks

www.scitools.com Page	307/413

MISRA08_11-
0-1

11-0-1
Member	data
in	non-POD
class	types
shall	be
private

Yes Required

MISRA08_12
-1-1

12-1-1	An
object's
dynamic	type
shall	not	be
used	from
the	body	of
its
constructor
or	destructor

Yes Required

MISRA08_12
-1-2

12-1-2
Explicitly	call
all	immediate
and	virtual
base	classes

Yes Advisory

MISRA08_12
-1-3

12-1-3	All
constructors
that	are
callable	with
a	single
argument	of
fundamental
type	shall	be
declared
explicit.

Yes Required

MISRA08_12
-8-1

12-8-1	A
copy
constructor
shall	only
initialize	its
base	classes
and	the	non-
static
members	of
the	class	of
which	it	is	a
member

Yes Required

C
Checks

www.scitools.com Page	308/413

MISRA08_14
-5-2

14-5-2	A
copy
constructor
shall	be
declared
when	there	is
a	template
constructor
with	a	single
parameter
that	is	a
generic
parameter

Yes Required

MISRA08_14
-5-3

14-5-3	A
copy
assignment
operator	shall
be	declared
when	there	is
a	template
assignment
operator	with
a	parameter
that	is	a
generic
parameter

Yes Required

MISRA08_14
-7-1

14-7-1	All
class
templates,
function
templates,
class
template
member
functions	and
class
template
static
members
shall	be
instantiated
at	least	once

Yes Required

C
Checks

www.scitools.com Page	309/413

MISRA08_14
-8-1

14-8-1
Overloaded
function
templates
shall	not	be
explicitly
specialized

Yes Required

MISRA08_15
-0-2

15-0-2	An
exception
object	should
not	have
pointer	type

Yes Advisory

MISRA08_15
-1-1

15-1-1	The
assignment-
expression	of
a	throw
statement
shall	not
itself	cause
an	exception
to	be	thrown

Yes Required

MISRA08_15
-1-2

15-1-2	NULL
shall	not	be
thrown
explicitly

Yes Required

MISRA08_15
-1-3

15-1-3	An
empty	throw
(throw;)	shall
only	be	used
in	the
compound-
statement	of
a	catch
handler

Yes Required

MISRA08_15
-3-1

15-3-1
Exceptions
shall	be
raised	only
after	start-up
and	before
termination
of	the

Yes Required

C
Checks

www.scitools.com Page	310/413

of	the

program
MISRA08_15
-3-2

15-3-2	There
should	be	at
least	one
exception
handler	to
catch	all
otherwise
unhandled
exceptions

Yes Advisory

MISRA08_15
-3-3

15-3-3
Members	in
function-try-
blocks	in
constructors
or
destructors

Yes Required

MISRA08_15
-3-5

15-3-5	A
class	type
exception
shall	always
be	caught	by
reference

Yes Required

MISRA08_15
-3-6

15-3-6	Order
of	Catch
Blocks	with
Derived
Classes

Yes Required

MISRA08_15
-5-1

15-5-1	A
class
destructor
shall	not	exit
with	an
exception

Yes Required

MISRA08_15
-5-2

15-5-2
Exceptions
thrown	shall
be	the	type
indicated	by
the	function

Yes Required

MISRA08_16
-0-1

16-0-1
#include

Yes Required

C
Checks

www.scitools.com Page	311/413

#include

directives	in
a	file	shall
only	be
preceded	by
other
preprocessor
directives	or
comments

MISRA08_16
-0-2

16-0-2
Macros	shall
only	be
#define'd	or
#undef'd	in
the	global
namespace

Yes Required

MISRA08_16
-0-3

16-0-3
#undef	shall
not	be	used

Yes Required

MISRA08_16
-0-4

16-0-4
Function-like
macros	shall
not	be
defined

Yes Required

MISRA08_16
-0-5

16-0-5
Arguments	to
a	function-
like	macro
shall	not
contain
tokens	that
look	like
preprocessin
g	directives

Yes Required

MISRA08_16
-0-6

16-0-6	In	the
definition	of	a
function-like
macro,	each
instance	of	a
parameter
shall	be
enclosed	in
parentheses,

Yes Required

C
Checks

www.scitools.com Page	312/413

parentheses,

unless	it	is
used	as	the
operand	of	#
or	##

MISRA08_16
-0-7

16-0-7
Undefined
macro
identifiers
shall	not	be
used	in	#if	or
#elif
preprocessor
directives,
except	as
operands	to
the	defined
operator

Yes Required

MISRA08_16
-0-8

16-0-8
Invalid
Preprocessor
Directives

Yes Required

MISRA08_16
-1-1

16-1-1	The
defined
preprocessor
operator	shall
only	be	used
in	one	of	the
two	standard
forms

Yes Required

MISRA08_16
-2-1

16-2-1	The
pre-
processor
shall	only	be
used	for	file
inclusion	and
include
guards

Yes Required

MISRA08_16
-2-2

16-2-2	C++
macros	shall
only	be	used
for	include
guards,	type

Yes Required

C
Checks

www.scitools.com Page	313/413

guards,	type

qualifiers,	or
storage	class
specifiers

MISRA08_16
-2-3

16-2-3
Include
guards	shall
be	provided

Yes Required

MISRA08_16
-2-4

16-2-4	The	',
",	/*	or	//
characters
shall	not
occur	in	a
header	file
name

Yes Required

MISRA08_16
-2-5

16-2-5	The
backslash
character
should	not
occur	in	a
header	file
name

Yes Advisory

MISRA08_16
-3-1

16-3-1	There
shall	be	at
most	one
occurrence
of	the	#	or	##
operators	in
a	single
macro
definition

Yes Required

MISRA08_16
-3-2

16-3-2	The	#
and	##
operators
should	not	be
used

Yes Advisory

MISRA08_17
-0-1

17-0-1
Reserved
identifiers,
macros	and
functions	in
the	standard
library	shall

Yes Required

C
Checks

www.scitools.com Page	314/413

library	shall

not	be
defined,
redefined	or
undefined

MISRA08_17
-0-2

17-0-2	The
names	of
standard
library
macros	and
objects	shall
not	be
reused

Yes Required

MISRA08_17
-0-3

17-0-3
Standard
Library
Function
Names

Yes Required

MISRA08_17
-0-5

17-0-5	The
setjmp	macro
and	the
longjmp
function	shall
not	be	used

Yes Required

MISRA08_18
-0-1

18-0-1	The	C
library	shall
not	be	used

Yes Required

MISRA08_18
-0-2

18-0-2	The
library
functions
atof,	atoi	and
atol	from
library
<cstdlib>
shall	not	be
used

Yes Required

MISRA08_18
-0-3

18-0-3	The
library
functions
abort,	exit,
getenv	and
system	from
library

Yes Required

C
Checks

www.scitools.com Page	315/413

library

<cstdlib>
shall	not	be
used

MISRA08_18
-0-4

18-0-4	The
time	handling
functions	of
library
<ctime>	shall
not	be	used

Yes Required

MISRA08_18
-0-5

18-0-5
Unbounded
Functions	of
<cstring>

Yes Required

MISRA08_18
-2-1

18-2-1	The
macro
offsetof	shall
not	be	used.

Yes Required

MISRA08_18
-4-1

18-4-1
Dynamic
heap	memory
allocation
shall	not	be
used.

Yes Required

MISRA08_18
-7-1

18-7-1	The
signal
handling
facilities	of
<csignal>
shall	not	be
used

Yes Required

MISRA08_19
-3-1

19-3-1	The
error
indicator
"errno"	shall
not	be	used.

Yes Required

MISRA08_27
-0-1

27-0-1	The
stream	input/
output	library
<cstdio>
shall	not	be
used

Yes Required

MISRA12_1.1 1.1	The Yes Required

C
Checks

www.scitools.com Page	316/413

1.1	The

program	shall
contain	no
violations	of
the	standard
C	syntax	and
constraints,
and	shall	not
exceed	the
implementati
on's
translation
limits

MISRA12_1.2 1.2	Language
extensions
should	not	be
used

No Advisory

MISRA12_1.3 1.3	There
shall	be	no
occurrence
of	undefined
or	critical
unspecified
behaviour

No Required

MISRA12_2.1 2.1	A	project
shall	not
contain
unreachable
code

Yes Required

MISRA12_2.2 2.2	There
shall	be	no
dead	code

No Required

MISRA12_2.3 2.3	A	project
should	not
contain
unused	type
declarations

Yes Advisory

MISRA12_2.4 2.4	A	project
should	not
contain
unused	tag
declarations

Yes Advisory

MISRA12_2.5 2.5	A	project Yes Advisory

C
Checks

www.scitools.com Page	317/413

2.5	A	project

should	not
contain
unused
macro
declarations

MISRA12_2.6 2.6	Unused
Labels

Yes Required

MISRA12_2.7 2.7	There
should	be	no
unused
parameters	in
functions

Yes Advisory

MISRA12_3.1 3.1	The
character
sequences	/*
and	//	shall
not	be	used
within	a
comment

Yes Required

MISRA12_3.2 3.2	Line-
splicing	shall
not	be	used
in	//
comments

Yes Required

MISRA12_4.1 4.1	Octal	and
Hexadecimal
Sequences

Yes Required

MISRA12_4.2 4.2	Trigraphs
should	not	be
used

Yes Advisory

MISRA12_5.1 5.1	External
identifiers
shall	be
distinct

Yes Required

MISRA12_5.2 5.2
Identifiers
declared	in
the	same
scope	and
name	space
shall	be
distinct

Yes Required

C
Checks

www.scitools.com Page	318/413

MISRA12_5.3 5.3
Shadowed
Identifiers

Yes Required

MISRA12_5.4 5.4	Macro
identifiers
shall	be
distinct

Yes Required

MISRA12_5.5 5.5
Identifiers
shall	be
distinct	from
macro	names

Yes Required

MISRA12_5.6 5.6	A	typedef
name	shall
be	a	unique
identifier

Yes Required

MISRA12_5.7 5.7	A	tag
name	shall
be	a	unique
identifier

Yes Required

MISRA12_5.8 5.8
Identifiers
that	define
objects	or
functions
with	external
linkage	shall
be	unique

Yes Required

MISRA12_5.9 5.9
Identifiers
that	define
objects	or
functions
with	internal
linkage
should	be
unique

Yes Advisory

MISRA12_6.1 6.1	Bit-fields
shall	only	be
declared	with
an
appropriate

Yes Required

C
Checks

www.scitools.com Page	319/413

appropriate

type
MISRA12_6.2 6.2	Single-bit

named	bit
fields	shall
not	be	of	a
signed	type

Yes Required

MISRA12_7.1 7.1	Octal
constants
shall	not	be
used

Yes Required

MISRA12_7.2 7.2	A	u	or	U
suffix	shall
be	applied	to
all	integer
constants
that	are
represented
in	an
unsigned
type

Yes Required

MISRA12_7.3 7.3	The
lowercase
character	L
shall	not	be
used	in	a
literal	suffix

Yes Required

MISRA12_7.4 7.4	A	string
literal	shall
not	be
assigned	to
an	object
unless	the
object's	type
is	"pointer	to
const-
qualified
char"

No Required

MISRA12_8.1 8.1	Types
shall	be
explicitly
specified

Yes Required

MISRA12_8.2 8.2	Use Yes

C
Checks

www.scitools.com Page	320/413

8.2	Use

Named
Parameters
and
Prototype
Form

MISRA12_8.3 8.3	All
declarations
of	an	object
or	function
shall	use	the
same	names
and	type
qualifiers

Yes Required

MISRA12_8.4 8.4	A
compatible
declaration
shall	be
visible	when
an	object	or
function	with
external
linkage	is
defined

Yes Required

MISRA12_8.5 8.5	An
external
object	or
function	shall
be	declared
once	in	one
and	only	one
file

Yes Required

MISRA12_8.6 8.6	An
identifier	with
external
linkage	shall
have	exactly
one	external
definition

Yes Required

MISRA12_8.7 8.7	Functions
and	objects
should	not	be
defined	with

Yes Advisory

C
Checks

www.scitools.com Page	321/413

defined	with

external
linkage	if
they	are
referenced	in
only	one
translation
unit

MISRA12_8.8 8.8	Use	the
static
keyword	for
internal
linkage

Yes Required

MISRA12_8.9 8.9	Objects
shall	be	local
if	only
accessed
from	one
function

Yes Advisory

MISRA12_8.1
0

8.10	Non-
static	Inline
Functions

Yes Required

MISRA12_8.1
1

8.11	When	an
array	with
external
linkage	is
declared,	its
size	should
be	explicitly
specified

Yes Advisory

MISRA12_8.1
2

8.12	Within
an
enumerator
list,	the	value
of	an
implicitly-
specified
enumeration
constant
shall	be
unique

Yes Required

MISRA12_8.1
3

8.13	A
pointer

No Advisory

C
Checks

www.scitools.com Page	322/413

pointer

should	point
to	a	const-
qualified	type
whenever
possible

MISRA12_8.1
4

8.14	The
restrict	type
qualifier	shall
not	be	used

Yes Required

MISRA12_9.1 9.1	The	value
of	an	object
with
automatic
storage
duration	shall
not	be	read
before	it	has
been	set

Yes Mandatory

MISRA12_9.2 9.2	The
initializer	for
an	aggregate
or	union	shall
be	enclosed
in	braces

Yes Required

MISRA12_9.3 9.3	Arrays
shall	not	be
partially
initialized

Yes Required

MISRA12_9.4 9.4	An
element	of	an
object	shall
not	be
initialized
more	than
once

Yes Required

MISRA12_9.5 9.5	Where
designated
initializers
are	used	to
initialize	an
array	object
the	size	of

Yes Required

C
Checks

www.scitools.com Page	323/413

the	size	of

the	array
shall	be
specified
explicitly

MISRA12_10.
1

10.1
Operands
shall	not	be
of	an
inappropriate
essential
type

Yes Required

MISRA12_10.
2

10.2
Expressions
of	essentially
character
type	shall	not
be	used
inappropriate
ly	in	addition
and
subtraction
operations

No Required

MISRA12_10.
3

10.3	The
value	of	an
expression
shall	not	be
assigned	to
an	object
with	a
narrower
essential
type	or	of	a
different
essential
type
category

No Required

MISRA12_10.
4

10.4	Both
operands	of
an	operator
in	which	the
usual
arithmetic

Yes Required

C
Checks

www.scitools.com Page	324/413

arithmetic

conversions
are
performed
shall	have
the	same
essential
type
category

MISRA12_10.
5

10.5	The
value	of	an
expression
should	not	be
cast	to	an
inappropriate
essential
type

Yes Advisory

MISRA12_10.
6

10.6	The
value	of	a
composite
expression
shall	not	be
assigned	to
an	object
with	wider
essential
type

Yes Required

MISRA12_10.
7

10.7	If	a
composite
expression	is
used	as	one
operand	of
an	operator
in	which	the
usual
arithmetic
conversions
are
performed
then	the
other
operand	shall
not	have

No Required

C
Checks

www.scitools.com Page	325/413

not	have

wider
essential
type

MISRA12_10.
8

10.8	The
value	of	a
composite
expression
shall	not	be
cast	to	a
different
essential
type
category	or	a
wider
essential
type

Yes Required

MISRA12_11.1 11.1
Conversions
shall	not	be
performed
between	a
pointer	to	a
function	and
any	other
type

Yes Required

MISRA12_11.
2

11.2
Conversions
shall	not	be
performed
between	a
pointer	to	an
incomplete
type
and	any
other	type

Yes Required

MISRA12_11.
3

11.3	A	cast
shall	not	be
performed
between	a
pointer	to
object	type
and	a	pointer

Yes Required

C
Checks

www.scitools.com Page	326/413

and	a	pointer

to	a	different
object	type

MISRA12_11.
4

11.4	A
conversion
should	not	be
performed
between	a
pointer	to
object	and	an
integer	type

Yes Required

MISRA12_11.
5

11.5	A
conversion
should	not	be
performed
from	pointer
to	void	into
pointer	to
object

Yes Advisory

MISRA12_11.
6

11.6	A	cast
shall	not	be
performed
between
pointer	to
void	and	an
arithmetic
type

Yes Required

MISRA12_11.711.7	A	cast
shall	not	be
performed
between
pointer	to
object	and	a
non-integer
arithmetic
type

Yes Required

MISRA12_11.
8

11.8	A	cast
shall	not
remove	any
const	or
volatile
qualification
from	the	type

Yes Required

C
Checks

www.scitools.com Page	327/413

from	the	type

pointed	to	by
a	pointer

MISRA12_11.
9

11.9	The
macro	NULL
shall	be	the
only
permitted
form	of
integer	null
pointer
constant

Yes Required

MISRA12_12.
1

12.1	The
precedence
of	operators
within
expressions
should	be
made	explicit

No Advisory

MISRA12_12.
2

12.2	The
right	hand
operand	of	a
shift	operator
shall	lie
between	zero
and	one	less
than	the
width	in	bits
of	the
underlying
type	of	the
left	hand
operand.

Yes Required

MISRA12_12.
3

12.3	The
comma
operator	shall
not	be	used.

Yes Advisory

MISRA12_12.
4

12.4
Evaluation	of
constant
expressions
should	not
lead	to

No Advisory

C
Checks

www.scitools.com Page	328/413

lead	to

unsigned
integer	wrap-
around

MISRA12_13.
1

13.1	Initializer
lists	shall	not
contain
persistent
side	effects

Yes Required

MISRA12_13.
2

13.2	The
value	of	an
expression
and	its
persistent
side	effects
shall	be	the
same	under
all	permitted
evaluation
orders

No Required

MISRA12_13.
3

13.3	A	full
expression
containing	an
increment	(+
+)	or
decrement
(--)	operator
should	have
no	other
potential	side
effects	other
than	that
caused	by
the
increment	or
decrement
operator

Yes Advisory

MISRA12_13.
4

13.4	The
result	of	an
assignment
operator
should	not	be
used

Yes Advisory

C
Checks

www.scitools.com Page	329/413

MISRA12_13.
5

13.5	The
right	hand
operand	of	a
logical	&&	or
||	operator
shall	not
contain
persistent
side	effects

Yes Required

MISRA12_13.
6

13.6	The
operand	of
the	sizeof
operator	shall
not	contain
any
expression
which	has
potential	side
effects

Yes Mandatory

MISRA12_14.
1

14.1	A	loop
counter	shall
not	have
essentially
floating	type

Yes Required

MISRA12_14.
2

14.2	A	for
loop	shall	be
well-formed

No Required

MISRA12_14.
3

14.3
Controlling
expressions
shall	not	be
invariant

No Required

MISRA12_14.
4

14.4	The
controlling
expression	of
an	if
statement
and	the
controlling
expression	of
an	iteration-
statement

Yes Required

C
Checks

www.scitools.com Page	330/413

statement

shall	have
essentially
Boolean	type

MISRA12_15.
1

15.1	The	goto
statement
should	not	be
used

Yes Advisory

MISRA12_15.
2

15.2	The
goto
statement
shall	jump	to
a	label
declared
later	in	the
same
function

Yes Required

MISRA12_15.
3

15.3	Any
label
referenced
by	a	goto
statement
shall	be
declared	in
the	same
block,	or	in
any	block
enclosing	the
goto
statement

Yes Required

MISRA12_15.
4

15.4	There
should	be	no
more	than
one	break	or
goto
statement
used	to
terminate	any
iteration
statement

Yes Advisory

MISRA12_15.
5

15.5	A
function
should	have

Yes Advisory

C
Checks

www.scitools.com Page	331/413

should	have

a	single	point
of	exit	at	the
end

MISRA12_15.
6

15.6	The
body	of	an
iteration-
statement	or
a	selection-
statement
shall	be	a
compound-
statement	

Yes Required

MISRA12_15.
7

15.7	All	if	...
else	if
constructs
shall	be
terminated
with	an	else
statement

Yes Required

MISRA12_16.
1

Switch
Statement
not	Well-
formed

Yes Required

MISRA12_16.
2

16.2	A	switch
label	shall
only	be	used
when	the
most	closely-
enclosing
compound
statement	is
the	body	of	a
switch
statement

Yes Required

MISRA12_16.
3

16.3	An
unconditional
break
statement
shall
terminate
every	switch-
clause

Yes Required

C
Checks

www.scitools.com Page	332/413

MISRA12_16.
4

16.4	Every
switch
statement
shall	have	a
default	label

Yes Required

MISRA12_16.
5

16.5	A
default	label
shall	appear
as	either	the
first	or	the
last	switch
label	of	a
switch
statement

Yes Required

MISRA12_16.
6

16.6	Every
switch
statement
shall	have	at
least	two
switch-
clauses

Yes Required

MISRA12_16.
7

16.7	A
switch-
expression
shall	not
have
essentially
Boolean	type

No Required

MISRA12_17.1 17.1	The
features	of
<stdarg.h>
shall	not	be
used

Yes Required

MISRA12_17.
2

17.2
Functions
shall	not	call
themselves,
either
directly	or
indirectly

Yes Required

MISRA12_17.
3

17.3	A
function	shall

Yes Mandatory

C
Checks

www.scitools.com Page	333/413

function	shall

not	be
declared
implicitly

MISRA12_17.
4

17.4	Always
return	a	value
in	non-void
functions

Yes Required

MISRA12_17.
5

17.5	The
function
argument
correspondin
g	to	a
parameter
declared	to
have	an	array
type	shall
have	an
appropriate
number	of
elements

No Advisory

MISRA12_17.
6

17.6	The
declaration
of	an	array
parameter
shall	not
contain	the
static
keyword
between	the
[]

Yes Mandatory

MISRA12_17.
7

17.7	The
value
returned	by	a
function
having	non-
void	return
type	shall	be
used

Yes Required

MISRA12_17.
8

17.8	A
function
parameter
should	not	be

Yes Advisory

C
Checks

www.scitools.com Page	334/413

should	not	be

modified
MISRA12_18.
1

18.1	A	pointer
resulting
from
arithmetic	on
a	pointer
operand	shall
address

No Required

MISRA12_18.
2

18.2
Subtraction
between
pointers	shall
only	be
applied	to
pointers	that
address
elements	of
the	same
array

Yes Required

MISRA12_18.
3

18.3	The
relational
operators	>,
>=,	<	and	<=
shall	not	be
applied	to
objects	of
pointer	type
except	where
they	point
into	the	same
object

Yes Required

MISRA12_18.
4

18.4	The	+,	-,
+=	and	-=
operators
should	not	be
applied	to	an
expression	of
pointer	type

No Advisory

MISRA12_18.
5

18.5
Declarations
should
contain	no

No Advisory

C
Checks

www.scitools.com Page	335/413

contain	no

more	than
two	levels	of
pointer
nesting

MISRA12_18.
6

18.6	The
address	of	an
object	with
automatic
storage	shall
not	be
copied	to
another
object	that
persists	after
the	first
object	has
ceased	to
exist

Yes Required

MISRA12_18.
7

18.7	Flexible
array
members
shall	not	be
declared

Yes Required

MISRA12_18.
8

18.8
Variable-
length	array
types	shall
not	be	used

No Required

MISRA12_19.
1

19.1	An
object	shall
not	be
assigned	or
copied	to	an
overlapping
object

No Mandatory

MISRA12_19.
2

19.2	The
Union
keyword
should	not	be
used

Yes Advisory

MISRA12_20.
1

20.1	#include
directives

Yes Advisory

C
Checks

www.scitools.com Page	336/413

directives

should	only
be	preceded
by
preprocessor
directives	or
comments

MISRA12_20.
2

20.2	The	',	"
or	backslash
characters
and	the	/*	or
//	character
sequences
shall	not
occur	in	a
header	file
name

Yes Required

MISRA12_20.
3

20.3	The
#include
directive
shall	be
followed	by
either	a
<filename>
or	"filename"
sequence

Yes Required

MISRA12_20.
4

20.4	A	macro
shall	not	be
defined	with
the	same
name	as	a
keyword

Yes Required

MISRA12_20.
5

20.5	#undef
should	not	be
used

Yes Advisory

MISRA12_20.
6

20.6	Tokens
that	look	like
a
preprocessin
g	directive
shall	not
occur	within
a	macro

Yes Required

C
Checks

www.scitools.com Page	337/413

a	macro

argument
MISRA12_20.
7

20.7
Expressions
resulting
from	the
expansion	of
macro
parameters
shall	be
enclosed	in
parentheses

No Required

MISRA12_20.
8

20.8	The
controlling
expression	of
a	#if	or	#elif
preprocessin
g	directive
shall	evaluate
to	0	or	1

No Required

MISRA12_20.
9

20.9	All
identifiers
used	in	the
controlling
expression	of
#if	or	#elif
preprocessin
g	directives
shall	be
#define'd
before
evaluation

No Required

MISRA12_20.
10

20.10	The	#
and	##
operators
should	not	be
used

Yes Advisory

MISRA12_20.
11

20.11	A
macro
parameter
immediately
following	a	#
operator	shall

Yes Required

C
Checks

www.scitools.com Page	338/413

operator	shall

not
immediately
be	followed
by	a	##
operator

MISRA12_20.
12

20.12	A
macro
parameter
used	as	an
operand	to
the	#	or	##
operators,
which	is	itself
subject	to
further	macro
replacement,
shall	only	be
used	as	an
operand	to
these
operators

No Required

MISRA12_20.
13

20.13	Invalid
Preprocessor
Directives

Yes Required

MISRA12_20.
14

20.14	All
#else,	#elif
and	#endif
preprocessor
directives
shall	reside	in
the	same	file
as	the	#if,
#ifdef	or
#ifndef
directive	to
which	they
are	related

Yes Required

MISRA12_21.
1

21.1	#define
and	#undef
shall	not	be
used	on	a
reserved

Yes Required

C
Checks

www.scitools.com Page	339/413

reserved

identifier	or
reserved
macro	name

MISRA12_21.
2

21.2
Reserved
Identifiers	or
Macros

Yes Required

MISRA12_21.
3

21.3	The
memory
allocation
and
deallocation
functions	of
<stdlib.h&g
t;	shall	not	be
used

Yes Required

MISRA12_21.
4

21.4	The
standard
header	file
<setjmp.h>
shall	not	be
used

Yes Required

MISRA12_21.
5

21.5	The
standard
header	file
signal.h	shall
not	be	used

Yes Required

MISRA12_21.
6

21.6	The
Standard
Library	input/
output
functions
shall	not	be
used

Yes Required

MISRA12_21.
7

21.7	The	atof,
atoi,	atol	and
atoll
functions	of
<stdlib.h>
shall	not	be
used

Yes Required

MISRA12_21. 21.8	The Yes Required

C
Checks

www.scitools.com Page	340/413

MISRA12_21.

8

21.8	The

library
functions
abort,	exit,
getenv	and
system	of
<stdlib.h>
shall	not	be
used

MISRA12_21.
9

21.9	The
library
functions
bsearch	and
qsort	of
<stdlib.h>
shall	not	be
used

Yes Required

MISRA12_21.
10

21.10	The
Standard
Library	time
and	date
functions
shall	not	be
used

Yes Required

MISRA12_21.
11

21.11	The
standard
header	file
<tgmath.h>
shall	not	be
used

Yes Required

MISRA12_21.
12

21.12	The
exception
handling
features	of
<fenv.h>
should	not	be
used

Yes Advisory

MISRA12_22.
1

22.1	All
resources
obtained
dynamically
by	means	of
Standard

No Required

C
Checks

www.scitools.com Page	341/413

Standard

Library
functions
shall	be
explicitly
released

MISRA12_22.
2

22.2	A	block
of	memory
shall	only	be
freed	if	it	was
allocated	by
means	of	a
Standard
Library
function

No Mandatory

MISRA12_22.
3

22.3	The
same	file
shall	not	be
open	for	read
and	write
access	at	the
same	time	on
different
streams

No Required

MISRA12_22.
4

22.4	There
shall	be	no
attempt	to
write	to	a
stream	which
has	been
opened	as
read-only

No Mandatory

MISRA12_22.
5

22.5	A
pointer	to	a
FILE	object
shall	not	be
dereferenced

No Mandatory

MISRA12_22.
6

22.6	The
value	of	a
pointer	to	a
FILE	shall	not
be	used	after
the

No Mandatory

C
Checks

www.scitools.com Page	342/413

the

associated
stream	has
been	closed

MISRA12_DIR
_1.1

Directive	1.1
Any
implementati
on-defined
behaviour	on
which	the
output	of	the
program
depends
shall	be
documented
and
understood

No Required

MISRA12_DIR
_2.1

Directive	2.1
All	source
files	shall
compile
without	any
compilation
errors

Yes Required

MISRA12_DIR
_3.1

Directive	3.1
All	code	shall
be	traceable
to
documented
requirements

No Required

MISRA12_DIR
_4.1

Directive	4.1
Run-time
failures	shall
be	minimized

No Required

MISRA12_DIR
_4.2

Directive	4.2
All	usage	of
assembly
language
should	be
documented

No Advisory

MISRA12_DIR
_4.3

Directive	4.3
Assembly
language

Yes Required

C
Checks

www.scitools.com Page	343/413

language

shall	be
encapsulated
and	isolated.

MISRA12_DIR
_4.4

Directive	4.4
Sections	of
code	should
not	be
"commented
out"

Yes Advisory

MISRA12_DIR
_4.5

Directive	4.5
Identifiers	in
the	same
name	space
with
overlapping
visibility
should	be
typographical
ly
unambiguous

Yes Advisory

MISRA12_DIR
_4.6

Directive	4.6
Typedefs	that
indicate	size
and
signedness
should	be
used	in	place
of	the	basic
numerical
types

Yes Advisory

MISRA12_DIR
_4.7

Directive	4.7
If	a	function
generates
error
information,
then	that
error
information
shall	be
tested

No Required

MISRA12_DIR
_4.8

Directive	4.8
If	a	pointer	to

Yes Advisory

C
Checks

www.scitools.com Page	344/413

If	a	pointer	to

a	structure	or
union	is
never
dereferenced
within	a
translation
unit,	then	the
implementati
on	of	the
object	should
be	hidden

MISRA12_DIR
_4.9

Directive	4.9
A	function
should	be
used	in
preference	to
a	function-
like	macro
where	they
are
interchangea
ble

No Advisory

MISRA12_DIR
_4.10

Directive	4.10
Precautions
shall	be
taken	in
order	to
prevent	the
contents	of	a
header	file
being
included
more	than
once

Yes Required

MISRA12_DIR
_4.11

Directive	4.11
The	validity
of	values
passed	to
library
functions
shall	be
checked

No Required

C
Checks

www.scitools.com Page	345/413

MISRA12_DIR
_4.12

Directive	4.12
Dynamic
memory
allocation
shall	not	be
used

Yes Required

MISRA12_DIR
_4.13

Directive	4.13
Functions
which	are
designed	to
provide
operations	on
a	resource
should	be
called	in	an
appropriate
sequence

No Advisory

MISRA23_0.0
.1

0.0.1	A
function	shall
not	contain
unreachable
statements

Yes Required

MISRA23_0.1
.2

0.1.2	The
value
returned	by	a
function	shall
be	used

Yes Required

MISRA23_0.2
.1

0.2.1
Variables
with	limited
visibility
should	be
used	at	least
once

Yes Advisory

MISRA23_0.2
.2

0.2.2	A
named
function
parameter
shall	be	used
at	least	once

Yes Required

MISRA23_0.2
.3

0.2.3	Types
with	limited

Yes Advisory

C
Checks

www.scitools.com Page	346/413

with	limited

visibility
should	be
used	at	least
once

MISRA23_0.2
.4

0.2.4
Functions
with	limited
visibility
should	be
used	at	least
once

Yes Advisory

MISRA23_1.1 1.1	The
program	shall
contain	no
violations	of
the	standard
C	syntax	and
constraints,
and	shall	not
exceed	the
implementati
on's
translation
limits

Yes Required

MISRA23_1.2 1.2	Language
extensions
should	not	be
used

No Advisory

MISRA23_1.3 1.3	There
shall	be	no
occurrence
of	undefined
or	critical
unspecified
behaviour

No Required

MISRA23_2.1 2.1	A	project
shall	not
contain
unreachable
code

Yes Required

MISRA23_2.22.2	A	project
shall	not

No Required

C
Checks

www.scitools.com Page	347/413

shall	not

contain	dead
code

MISRA23_2.32.3	A	project
should	not
contain
unused	type
declarations

Yes Advisory

MISRA23_2.
4

2.4	A	project
should	not
contain
unused	tag
declarations

Yes Advisory

MISRA23_2.52.5	A	project
should	not
contain
unused
macro
declarations

Yes Advisory

MISRA23_2.
6

2.6	A
function
should	not
contain
unused	label
declarations

Yes Required

MISRA23_2.7 2.7	A
function
should	not
contain
unused
parameters

Yes Advisory

MISRA23_3.1 3.1	The
character
sequences	/*
and	//	shall
not	be	used
within	a
comment

Yes Required

MISRA23_3.23.2	Line-
splicing	shall
not	be	used
in	//
comments

Yes Required

C
Checks

www.scitools.com Page	348/413

MISRA23_4.1 4.1	Octal	and
Hexadecimal
Sequences

Yes Required

MISRA23_4.
2

4.2	Trigraphs
should	not	be
used

Yes Advisory

MISRA23_5.0
.1

5.0.1
Trigraph-like
sequences
should	not	be
used

Yes Required

MISRA23_5.1 5.1	External
identifiers
shall	be
distinct

Yes Required

MISRA23_5.25.2
Identifiers
declared	in
the	same
scope	and
name	space
shall	be
distinct

Yes Required

MISRA23_5.
3

5.3	An
identifier
declared	in
an	inner
scope	shall
not	hide	an
identifier
declared	in
an	outer
scope

Yes Required

MISRA23_5.
4

5.4	Macro
identifiers
shall	be
distinct

Yes Required

MISRA23_5.
5

5.5
Identifiers
shall	be
distinct	from
macro	names

Yes Required

C
Checks

www.scitools.com Page	349/413

MISRA23_5.
6

5.6	A	typedef
name	shall
be	a	unique
identifier

Yes Required

MISRA23_5.75.7	A	tag
name	shall
be	a	unique
identifier

Yes Required

MISRA23_5.7
.1

5.7.1	The
character
sequence	/*
shall	not	be
used	within	a
C-style
comment

Yes Required

MISRA23_5.7
.2

5.7.2
Sections	of
code	should
not	be
"commented
out"

Yes Advisory

MISRA23_5.7
.3

5.7.3	Line-
splicing	shall
not	be	used
in	//
comments

Yes Required

MISRA23_5.
8

5.8
Identifiers
that	define
objects	or
functions
with	external
linkage	shall
be	unique

Yes Required

MISRA23_5.
9

5.9
Identifiers
that	define
objects	or
functions
with	internal
linkage
should	be

Yes Advisory

C
Checks

www.scitools.com Page	350/413

should	be

unique
MISRA23_5.1
3.1

5.13.1	Within
character
literals	and
non	raw-
string	literals,
\	shall	only	be
used	to	form
a	defined
escape
sequence	or
universal
character
name

Yes Required

MISRA23_5.1
3.2

5.13.2	Octal
escape
sequences,
hexadecimal
escape
sequences
and	universal
character
names	shall
be
terminated

Yes Required

MISRA23_5.1
3.3

5.13.3	Octal
constants
shall	not	be
used

Yes Required

MISRA23_5.1
3.4

5.13.4
Unsigned
integer
literals	shall
be
appropriately
suffixed

Yes Required

MISRA23_5.1
3.5

5.13.5	The
lowercase
form	of	L
shall	not	be
used	as	the
first

Yes Required

C
Checks

www.scitools.com Page	351/413

first

character	in	a
literal	suffix

MISRA23_5.1
3.6

5.13.6	An
integer-literal
of	type	long
long	shall	not
use	a	single	L
or	l	in	any
suffix

Yes Required

MISRA23_5.1
3.7

5.13.7	String
literals	with
different
encoding
prefixes	shall
not	be
concatenated

Yes Required

MISRA23_6.
0.1

6.0.1	Block
scope
declarations
shall	not	be
visually
ambiguous

Yes Required

MISRA23_6.
0.2

6.0.2	When
an	array	with
external
linkage	is
declared,	its
size	should
be	explicitly
specified

Yes Advisory

MISRA23_6.
0.4

6.0.4	The
identifier
main	shall
not	be	used
for	a	function
other	than
the	global
function	main

Yes Required

MISRA23_6.1 6.1	Bit-fields
shall	only	be
declared	with
an

Yes Required

C
Checks

www.scitools.com Page	352/413

an

appropriate
type

MISRA23_6.
2

6.2	Single-bit
named	bit
fields	shall
not	be	of	a
signed	type

Yes Required

MISRA23_6.
2.4

6.2.4	A
header	file
shall	not
contain
definitions	of
functions	or
objects	that
are	non-
inline	and
have	external
linkage

Yes Required

MISRA23_6.
3

6.3	A	bit	field
shall	not	be
declared	as	a
member	of	a
union

Yes Required

MISRA23_6.
4.2

6.4.2	Derived
classes	shall
not	conceal
functions
that	are
inherited
from	their
bases

Yes Required

MISRA23_6.
5.1

6.5.1	A
function	or
object	with
external
linkage
should	be
introduced	in
a	header	file

Yes Advisory

MISRA23_6.
5.2

6.5.2	Internal
linkage
should	be

Yes Advisory

C
Checks

www.scitools.com Page	353/413

should	be

specified
appropriately

MISRA23_6.7
.1

6.7.1	Local
variables
shall	not
have	static
storage
duration

Yes Required

MISRA23_6.7
.2

6.7.2	Global
variables
shall	not	be
used

Yes Required

MISRA23_6.
8.2

6.8.2	A
function
must	not
return	a
reference	or
a	pointer	to	a
local	variable
with
automatic
storage
duration

Yes Mandatory

MISRA23_6.
9.1

6.9.1	The
same	type
aliases	shall
be	used	in	all
declarations
of	the	same
entity

Yes Required

MISRA23_6.
9.2

6.9.2	The
names	of	the
standard
signed
integer	types
and	standard
unsigned
integer	types
should	not	be
used

Yes Advisory

MISRA23_7.0
.1

7.0.1	There
shall	be	no

Yes Required

C
Checks

www.scitools.com Page	354/413

shall	be	no

conversion
from	type
bool

MISRA23_7.0
.3

7.0.3	The
numerical
value	of	a
character
shall	not	be
used

Yes Required

MISRA23_7.1 7.1	Octal
constants
shall	not	be
used

Yes Required

MISRA23_7.2 7.2	A	"u"	or
"U"	suffix
shall	be
applied	to	all
integer
constants
that	are
represented
in	an
unsigned
type

Yes Required

MISRA23_7.3 7.3	The
lowercase
character	"l"
shall	not	be
used	in	a
literal	suffix

Yes Required

MISRA23_7.4 7.4	A	string
literal	shall
not	be
assigned	to
an	object
unless	the
object's	type
is	"pointer	to
const-
qualified
char"

No Required

MISRA23_7.1 7.11.1	nullptr Yes Required

C
Checks

www.scitools.com Page	355/413

MISRA23_7.1

1.1

7.11.1	nullptr

shall	be	the
only	form	of
the	null-
pointer-
constant

MISRA23_7.1
1.2

7.11.2	Array
to	Pointer
Decay

Yes Required

MISRA23_8.1 8.1	Types
shall	be
explicitly
specified

Yes Required

MISRA23_8.1
.1

8.1.1	A	non-
transient
lambda	shall
not	implicitly
capture	this

Yes Required

MISRA23_8.1
.2

8.1.2
Variables
should	be
captured
explicitly	in	a
non-transient
lambda

Yes Advisory

MISRA23_8.28.2	Use
Named
Parameters
and
Prototype
Form

Yes Required

MISRA23_8.2
.3

8.2.3	A	cast
shall	not
remove	any
const	or
volatile
qualification
from	the	type
accessed	via
a	pointer	or
by	reference

Yes Required

MISRA23_8.2
.5

8.2.5
reinterpret_c

Yes Required

C
Checks

www.scitools.com Page	356/413

reinterpret_c

ast	shall	not
be	used

MISRA23_8.2
.6

8.2.6	An
object	with
integral,
enumerated,
or	pointer	to
void	type
shall	not	be
cast	to	a
pointer	type

Yes Required

MISRA23_8.2
.7

8.2.7	Pointer
to	Integer
Cast

Yes Advisory

MISRA23_8.2
.8

8.2.8	An
object
pointer	type
shall	not	be
cast	to	an
integral	type
other	than
std::uintptr_t
or
std::intptr_t

Yes Required

MISRA23_8.2
.9

8.2.9	The
operand	to
typeid	shall
not	be	an
expression	of
polymorphic
class	type

Yes Required

MISRA23_8.2
.10

8.2.10
Functions
shall	not	call
themselves,
either
directly	or
indirectly

Yes Required

MISRA23_8.
3

8.3	All
declarations
of	an	object
or	function

Yes Required

C
Checks

www.scitools.com Page	357/413

or	function

shall	use	the
same	names
and	type
qualifiers

MISRA23_8.3
.1

8.3.1	The
built-in	unary
-	operator
should	not	be
applied	to	an
expression	of
unsigned
type

Yes Advisory

MISRA23_8.3
.2

8.3.2	The
built-in	unary
+	operator
should	not	be
used

Yes Advisory

MISRA23_8.
4

8.4	A
compatible
declaration
shall	be
visible	when
an	object	or
function	with
external
linkage	is
defined

Yes Required

MISRA23_8.
5

8.5	An
external
object	or
function	shall
be	declared
once	in	one
and	only	one
file

Yes Required

MISRA23_8.
6

8.6	An
identifier	with
external
linkage	shall
have	exactly
one	external
definition

Yes Required

C
Checks

www.scitools.com Page	358/413

MISRA23_8.78.7	Functions
and	objects
should	not	be
defined	with
external
linkage	if
they	are
referenced	in
only	one
translation
unit

Yes Advisory

MISRA23_8.7
.2

8.7.2
Subtraction
between
pointers	shall
only	be
applied	to
pointers	that
address
elements	of
the	same
array

Yes Required

MISRA23_8.
8

8.8	The
static	storage
class
specifier
shall	be	used
in	all
declarations
of	objects
and	functions
that	have
internal
linkage

Yes Required

MISRA23_8.
9

8.9	An	object
should	be
declared	at
block	scope
if	its	identifier
only	appears
in	a	single
function

Yes Advisory

C
Checks

www.scitools.com Page	359/413

MISRA23_8.1
0

8.10	Non-
static	Inline
Functions

Yes Required

MISRA23_8.1
1

8.11	When	an
array	with
external
linkage	is
declared,	its
size	should
be	explicitly
specified

Yes Advisory

MISRA23_8.1
2

8.12	Within
an
enumerator
list,	the	value
of	an
implicitly-
specified
enumeration
constant
shall	be
unique

Yes Required

MISRA23_8.1
3

8.13	A
pointer
should	point
to	a	const-
qualified	type
whenever
possible

No Advisory

MISRA23_8.1
4

8.14	The
restrict	type
qualifier	shall
not	be	used

Yes Required

MISRA23_8.1
4.1

8.14.1	The
right-hand
operand	of	a
logical	&&	or
||	operator
should	not
contain
persistent
side	effects

Yes Advisory

C
Checks

www.scitools.com Page	360/413

MISRA23_8.1
5

8.15	All
declarations
of	an	object
with	an
explicit
alignment
specification
shall	specify
the	same
alignment

Yes Required

MISRA23_8.1
6

8.16	The
alignment
specification
of	zero
should	not
appear	in	an
object
declaration

Yes Advisory

MISRA23_8.1
7

8.17	At	most
one	explicit
alignment
specifier
should
appear	in	an
object
declaration

Yes Advisory

MISRA23_8.1
9.1

8.19.1	The
comma
operator	shall
not	be	used.

Yes Advisory

MISRA23_9.1 9.1	The	value
of	an	object
with
automatic
storage
duration	shall
not	be	read
before	it	has
been	set

Yes Mandatory

MISRA23_9.29.2	The
initializer	for
an	aggregate

Yes Required

C
Checks

www.scitools.com Page	361/413

an	aggregate

or	union	shall
be	enclosed
in	braces

MISRA23_9.
3

9.3	Arrays
shall	not	be
partially
initialized

Yes Required

MISRA23_9.3
.1

9.3.1	The
body	of	an
iteration-
statement	or
a	selection-
statement
shall	be
acompound-
statement

Yes Required

MISRA23_9.
4

9.4	An
element	of	an
object	shall
not	be
initialized
more	than
once

Yes Required

MISRA23_9.
4.1

9.4.1	All	if	...
else	if
constructs
shall	be
terminated
with	an	else
statement

Yes Required

MISRA23_9.
5

9.5	Where
designated
initializers
are	used	to
initialize	an
array	object
the	size	of
the	array
shall	be
specified
explicitly

Yes Required

C
Checks

www.scitools.com Page	362/413

MISRA23_9.
5.2

9.5.2	A	for-
range-
initializer
shall	contain
at	most	one
function	call

Yes Required

MISRA23_9.
6.1

9.6.1	The
goto
statement
should	not	be
used

Yes Advisory

MISRA23_9.
6.2

9.6.2	A	goto
statement
shall
reference	a
label	in	a
surrounding
block

Yes Required

MISRA23_9.
6.3

9.6.3	The
goto
statement
shall	jump	to
a	label
declared
later	in	the
function
body

Yes Required

MISRA23_9.
6.4

9.6.4	A
function
declared	with
the
[[noreturn]]
attribute	shall
not	return

Yes Required

MISRA23_9.
6.5

9.6.5	A
function	with
non-void
return	type
shall	return	a
value	on	all
paths

Yes Required

MISRA23_9.79.7	Atomic Yes Mandatory

C
Checks

www.scitools.com Page	363/413

9.7	Atomic

objects	shall
be
appropriately
initialized
before	being
accessed

MISRA23_10.
0.1

10.0.1	A
declaration
should	not
declare	more
than	one
variable	or
member
variable

Yes Advisory

MISRA23_10.
1

10.1
Operands
shall	not	be
of	an
inappropriate
essential
type

Yes Required

MISRA23_10.
1.1

10.1.1	The
target	type	of
a	pointer	or
lvalue
reference
parameter
should	be
const-
qualified
appropriately

Yes Advisory

MISRA23_10.
1.2

10.1.2	The
volatile
qualifier	shall
be	used
appropriately

Yes Required

MISRA23_10.
2

10.2
Expressions
of	essentially
character
type	shall	not
be	used

No Required

C
Checks

www.scitools.com Page	364/413

be	used

inappropriate
ly	in	addition
and
subtraction
operations

MISRA23_10.
2.1

10.2.1	An
enumeration
shall	be
defined	with
an	explicit
underlying
type

Yes Required

MISRA23_10.
2.2

10.2.2
Unscoped
enumerations
should	not	be
declared

Yes Advisory

MISRA23_10.
3

10.3	The
value	of	an
expression
shall	not	be
assigned	to
an	object
with	a
narrower
essential
type	or	of	a
different
essential
type
category

No Required

MISRA23_10.
3.1

10.3.1	There
should	be	no
unnamed
namespaces
in	header
files

Yes Advisory

MISRA23_10.
4

10.4	Both
operands	of
an	operator
in	which	the
usual

Yes Required

C
Checks

www.scitools.com Page	365/413

usual

arithmetic
conversions
are
performed
shall	have
the	same
essential
type
category

MISRA23_10.
4.1

10.4.1	The
asm
declaration
shall	not	be
used

Yes Required

MISRA23_10.
5

10.5	The
value	of	an
expression
should	not	be
cast	to	an
inappropriate
essential
type

Yes Advisory

MISRA23_10.
6

10.6	The
value	of	a
composite
expression
shall	not	be
assigned	to
an	object
with	wider
essential
type

Yes Required

MISRA23_10.
7

10.7	If	a
composite
expression	is
used	as	one
operand	of
an	operator
in	which	the
usual
arithmetic
conversions

No Required

C
Checks

www.scitools.com Page	366/413

conversions

are
performed
then	the
other
operand	shall
not	have
wider
essential
type

MISRA23_10.
8

10.8	The
value	of	a
composite
expression
shall	not	be
cast	to	a
different
essential
type
category	or	a
wider
essential
type

Yes Required

MISRA23_11.
1

11.1
Conversions
shall	not	be
performed
between	a
pointer	to	a
function	and
any	other
type

Yes Required

MISRA23_11.
2

11.2
Conversions
shall	not	be
performed
between	a
pointer	to	an
incomplete
type
and	any
other	type

Yes Required

MISRA23_11. 11.3	A	cast Yes Required

C
Checks

www.scitools.com Page	367/413

MISRA23_11.

3

11.3	A	cast

shall	not	be
performed
between	a
pointer	to
object	type
and	a	pointer
to	a	different
object	type

MISRA23_11.
3.1

11.3.1
Variables	of
array	type
should	not	be
declared

Yes Advisory

MISRA23_11.
3.2

11.3.2	The
declaration
of	an	object
should
contain	no
more	than
two	levels	of
pointer
indirection

Yes Advisory

MISRA23_11.
4

11.4	A
conversion
should	not	be
performed
between	a
pointer	to
object	and	an
integer	type

Yes Required

MISRA23_11.
5

11.5	A
conversion
should	not	be
performed
from	pointer
to	void	into
pointer	to
object

Yes Advisory

MISRA23_11.
6

11.6	A	cast
shall	not	be
performed
between

Yes Required

C
Checks

www.scitools.com Page	368/413

between

pointer	to
void	and	an
arithmetic
type

MISRA23_11.
6.1

11.6.1	All
variables
should	be
initialized

Yes Advisory

MISRA23_11.
6.3

11.6.3	Within
an
enumerator
list,	the	value
of	an
implicitly-
specified
enumeration
constant
shall	be
unique

Yes Required

MISRA23_11.
7

11.7	A	cast
shall	not	be
performed
between
pointer	to
object	and	a
non-integer
arithmetic
type

Yes Required

MISRA23_11.
8

11.8	A
conversion
shall	not
remove	any
const,
volatile	or
_Atomic
qualification
from	the	type
pointed	to	by
a	pointer

Yes Required

MISRA23_11.
9

11.9	The
macro	NULL
shall	be	the

Yes Required

C
Checks

www.scitools.com Page	369/413

shall	be	the

only
permitted
form	of
integer	null
pointer
constant

MISRA23_12.
1

12.1	The
precedence
of	operators
within
expressions
should	be
made	explicit

No Advisory

MISRA23_12.
2

12.2	The
right	hand
operand	of	a
shift	operator
shall	lie	in	the
range	zero	to
one	less	than
the	width	in
bits	of	the
essential
type	of	the
left	hand
operand

Yes Required

MISRA23_12.
2.1

12.2.1	Bit-
fields	should
not	be
declared

Yes Advisory

MISRA23_12.
2.2

12.2.2	A	bit-
field	shall
have	an
appropriate
type

Yes Required

MISRA23_12.
2.3

12.2.3	A
named	bit-
field	with
signed
integer	type
shall	not
have	a	length

Yes Required

C
Checks

www.scitools.com Page	370/413

have	a	length

of	one	bit
MISRA23_12.
3

12.3	The
comma
operator	shall
not	be	used.

Yes Advisory

MISRA23_12.
3.1

12.3.1	The
union
keyword	shall
not	be	used

Yes Required

MISRA23_12.
4

12.4
Evaluation	of
constant
expressions
should	not
lead	to
unsigned
integer	wrap-
around

No Advisory

MISRA23_13.
1

13.1	Initializer
lists	shall	not
contain
persistent
side	effects

Yes Required

MISRA23_13.
1.1

13.1.1	Classes
should	not	be
inherited
virtually

Yes Advisory

MISRA23_13.
1.2

13.1.2	An
accessible
base	class
shall	not	be
both	virtual
and	non-
virtual	in	the
same
hierarchy

Yes Required

MISRA23_13.
2

13.2	The
value	of	an
expression
and	its
persistent
side	effects

No Required

C
Checks

www.scitools.com Page	371/413

side	effects

shall	be	the
same	under
all	permitted
evaluation
orders

MISRA23_13.
3

13.3	A	full
expression
containing	an
increment	(+
+)	or
decrement
(--)	operator
should	have
no	other
potential	side
effects	other
than	that
caused	by
the
increment	or
decrement
operator

Yes Advisory

MISRA23_13.
3.1

13.3.1	User-
declared
member
functions
shall	use	the
virtual,
override	and
final
specifiers
appropriately

Yes Required

MISRA23_13.
3.2

13.3.2
Parameters	in
an	overriding
virtual
function	shall
not	specify
different
default
arguments

Yes Required

MISRA23_13. 13.3.3	The Yes Required

C
Checks

www.scitools.com Page	372/413

MISRA23_13.

3.3

13.3.3	The

parameters	in
all
declarations
or	overrides
of	a	function
shall	either
be	unnamed
or	have
identical
names

MISRA23_13.
4

13.4	The
result	of	an
assignment
operator
should	not	be
used

Yes Advisory

MISRA23_13.
5

13.5	The
right	hand
operand	of	a
logical	&&	or
||	operator
shall	not
contain
persistent
side	effects

Yes Required

MISRA23_13.
6

13.6	The
operand	of
the	sizeof
operator	shall
not	contain
any
expression
which	has
potential	side
effects

Yes Mandatory

MISRA23_14.
1

14.1	A	loop
counter	shall
not	have
essentially
floating	type

Yes Required

MISRA23_14.
1.1

14.1.1	Non-
static	data

Yes Advisory

C
Checks

www.scitools.com Page	373/413

static	data

members
should	be
either	all
private	or	all
public

MISRA23_14.
2

14.2	A	for
loop	shall	be
well-formed

No Required

MISRA23_14.
3

14.3
Controlling
expressions
shall	not	be
invariant

No Required

MISRA23_14.
4

14.4	The
controlling
expression	of
an	if
statement
and	the
controlling
expression	of
an	iteration-
statement
shall	have
essentially
Boolean	type

Yes Required

MISRA23_15.
0.2

15.0.2	User-
provided
copy	and
move
member
functions	of	a
class	should
have
appropriate
signatures

Yes Advisory

MISRA23_15.
1

15.1	The	goto
statement
should	not	be
used

Yes Advisory

MISRA23_15.
1.1

15.1.1	An
object's

Yes Required

C
Checks

www.scitools.com Page	374/413

object's

dynamic	type
shall	not	be
used	from
within	its
constructor
or	destructor

MISRA23_15.
1.3

15.1.3
Conversion
operators
and
constructors
that	are
callable	with
a	single
argument
shall	be
explicit

Yes Required

MISRA23_15.
1.5

15.1.5	A	class
shall	only
define	an
initializer-list
constructor
when	it	is	the
only
constructor

Yes Required

MISRA23_15.
2

15.2	The
goto
statement
shall	jump	to
a	label
declared
later	in	the
same
function

Yes Required

MISRA23_15.
3

15.3	Any
label
referenced
by	a	goto
statement
shall	be
declared	in
the	same

Yes Required

C
Checks

www.scitools.com Page	375/413

the	same

block,	or	in
any	block
enclosing	the
goto
statement

MISRA23_15.
4

15.4	There
should	be	no
more	than
one	break	or
goto
statement
used	to
terminate	any
iteration
statement

Yes Advisory

MISRA23_15.
5

15.5	A
function
should	have
a	single	point
of	exit	at	the
end

Yes Advisory

MISRA23_15.
6

15.6	The
body	of	an
iteration-
statement	or
a	selection-
statement
shall	be	a
compound-
statement	

Yes Required

MISRA23_15.
7

15.7	All	if	...
else	if
constructs
shall	be
terminated
with	an	else
statement

Yes Required

MISRA23_16.
1

Switch
Statement
not	Well-
formed

Yes Required

MISRA23_16. 16.2	A	switch Yes Required

C
Checks

www.scitools.com Page	376/413

MISRA23_16.

2

16.2	A	switch

label	shall
only	be	used
when	the
most	closely-
enclosing
compound
statement	is
the	body	of	a
switch
statement

MISRA23_16.
3

16.3	An
unconditional
break
statement
shall
terminate
every	switch-
clause

Yes Required

MISRA23_16.
4

16.4	Every
switch
statement
shall	have	a
default	label

Yes Required

MISRA23_16.
5

16.5	A
default	label
shall	appear
as	either	the
first	or	the
last	switch
label	of	a
switch
statement

Yes Required

MISRA23_16.
5.1

16.5.1	The
logical	AND
and	logical
OR	operators
shall	not	be
overloaded

Yes Required

MISRA23_16.
5.2

16.5.2	The
address-of
operator	shall
not	be

Yes Required

C
Checks

www.scitools.com Page	377/413

not	be

overloaded
MISRA23_16.
6

16.6	Every
switch
statement
shall	have	at
least	two
switch-
clauses

Yes Required

MISRA23_16.
6.1

16.6.1
Symmetrical
operators
should	only
be
implemented
as	non-
member
functions

Yes Advisory

MISRA23_16.
7

16.7	A
switch-
expression
shall	not
have
essentially
Boolean	type

No Required

MISRA23_17.
1

17.1	The
standard
header	file
<stdarg.h>
shall	not	be
used

Yes Required

MISRA23_17.
2

17.2
Functions
shall	not	call
themselves,
either
directly	or
indirectly

Yes Required

MISRA23_17.
3

17.3	A
function	shall
not	be
declared
implicitly

Yes Mandatory

C
Checks

www.scitools.com Page	378/413

MISRA23_17.
4

17.4	All	exit
paths	from	a
function	with
non-void
return	type
shall	have	an
explicit
return
statement
with	an
expression

Yes Required

MISRA23_17.
5

17.5	The
function
argument
correspondin
g	to	a
parameter
declared	to
have	an	array
type	shall
have	an
appropriate
number	of
elements

No Advisory

MISRA23_17.
6

17.6	The
declaration
of	an	array
parameter
shall	not
contain	the
static
keyword
between	the
[]

Yes Mandatory

MISRA23_17.
7

The	value
returned	by	a
function
having	non-
void	return
type	shall	be
used

Yes Required

MISRA23_17. 17.8	A Yes Advisory

C
Checks

www.scitools.com Page	379/413

MISRA23_17.

8

17.8	A

function
parameter
should	not	be
modified

MISRA23_17.
8.1

17.8.1
Function
templates
shall	not	be
explicitly
specialized

Yes Required

MISRA23_17.
10

17.10	A
function
declared	with
a	_Noreturn
function
specifier
shall	have
void	return
type

Yes Required

MISRA23_17.
12

17.12	A
function
identifier
should	only
be	used	with
either	a
preceding	&,
or	with	a
parenthesize
d	parameter
list

Yes Required

MISRA23_17.
13

17.13	A
function	type
shall	not	be
type	qualified

Yes Required

MISRA23_18.
1

18.1	A	pointer
resulting
from
arithmetic	on
a	pointer
operand	shall
address	an
element	of

No Required

C
Checks

www.scitools.com Page	380/413

element	of

the	same
array	as	that
pointer
operand

MISRA23_18.
1.1

18.1.1	An
exception
object	shall
not	have
pointer	type

Yes Required

MISRA23_18.
1.2

18.1.2	An
empty	throw
shall	only
occur	within
the
compound-
statement	of
a	catch
handler

Yes Required

MISRA23_18.
2

18.2
Subtraction
between
pointers	shall
only	be
applied	to
pointers	that
address
elements	of
the	same
array

Yes Required

MISRA23_18.
3

18.3	The
relational
operators	>,
>=,	<	and	<=
shall	not	be
applied	to
objects	of
pointer	type
except	where
they	point
into	the	same
object

Yes Required

MISRA23_18. 18.3.1	There Yes Advisory

C
Checks

www.scitools.com Page	381/413

MISRA23_18.

3.1

18.3.1	There

should	be	at
least	one
exception
handler	to
catch	all
otherwise
unhandled
exceptions

MISRA23_18.
3.2

18.3.2	An
exception	of
class	type
shall	be
caught	by
const
reference	or
reference

Yes Required

MISRA23_18.
3.3

18.3.3
Handlers	for
a	function-
try-block	of	a
constructor
or	destructor
shall	not	refer
to	non-static
members
from	their
class	or	its
bases

Yes Required

MISRA23_18.
4

18.4	The	+,	-,
+=	and	-=
operators
should	not	be
applied	to	an
expression	of
pointer	type

No Advisory

MISRA23_18.
5

18.5
Declarations
should
contain	no
more	than
two	levels	of
pointer

No Advisory

C
Checks

www.scitools.com Page	382/413

pointer

nesting
MISRA23_18.
5.2

18.5.2
Program-
terminating
functions
should	not	be
used

Yes Advisory

MISRA23_18.
6

18.6	The
address	of	an
object	with
automatic	or
thread-local
storage	shall
not	be
copied	to
another
object	that
persists	after
the	first
object	has
ceased	to
exist

Yes Required

MISRA23_18.
7

18.7	Flexible
array
members
shall	not	be
declared

Yes Required

MISRA23_18.
8

18.8
Variable-
length	array
types	shall
not	be	used

No Required

MISRA23_19.
0.1

19.0.1	A	line
whose	first
token	is	#
shall	be	a
valid
preprocessin
g	directive

Yes Required

MISRA23_19.
0.2

19.0.2
Function-like
macros	shall

Yes Required

C
Checks

www.scitools.com Page	383/413

macros	shall

not	be
defined

MISRA23_19.
0.4

19.0.4
#undef
should	only
be	used	for
macros
defined
previously	in
the	same	file

Yes Advisory

MISRA23_19.
1

19.1	An
object	shall
not	be
assigned	or
copied	to	an
overlapping
object

No Mandatory

MISRA23_19.
1.1

19.1.1	The
defined
preprocessor
operator	shall
be	used
appropriately

Yes Required

MISRA23_19.
1.3

19.1.3	All
identifiers
used	in	the
controlling
expression	of
#if	or	#elif
preprocessin
g	directives
shall	be
defined	prior
to	evaluation

No Required

MISRA23_19.
2

19.2	The
union
keyword
should	not	be
used

Yes Advisory

MISRA23_19.
2.1

19.2.1
Precautions
shall	be

Yes Required

C
Checks

www.scitools.com Page	384/413

shall	be

taken	in
order	to
prevent	the
contents	of	a
header	file
being
included
more	than
once

MISRA23_19.
2.3

19.2.3	The	'
or	"	or	\
characters
and	the	/*	or
//	character
sequences
shall	not
occur	in	a
header	file
name

Yes Required

MISRA23_19.
3.1

19.3.1	The	#
and	##
operators
should	not	be
used

Yes Advisory

MISRA23_19.
3.2

19.3.2	A
macro
parameter
immediately
following	a	#
operator	shall
not
immediately
be	followed
by	a	##
operator

Yes Required

MISRA23_19.
3.4

19.3.4
Parentheses
shall	be	used
to	ensure
macro
arguments
are	expanded

Yes Required

C
Checks

www.scitools.com Page	385/413

are	expanded

appropriately
MISRA23_19.
3.5

19.3.5
Tokens	that
look	like	a
preprocessin
g	directive
shall	not
occur	within
a	macro
argument

Yes Advisory

MISRA23_19.
6.1

19.6.1	The
#pragma
directive	and
the	_Pragma
operator
should	not	be
used

Yes Advisory

MISRA23_20.
1

20.1	#include
directives
should	only
be	preceded
by
preprocessor
directives	or
comments

Yes Advisory

MISRA23_20.
2

20.2	The	',	"
or	backslash
characters
and	the	/*	or
//	character
sequences
shall	not
occur	in	a
header	file
name

Yes Required

MISRA23_20.
3

20.3	The
#include
directive
shall	be
followed	by
either	a
<filename>

Yes Required

C
Checks

www.scitools.com Page	386/413

<filename>

or	"filename"
sequence

MISRA23_20.
4

20.4	A	macro
shall	not	be
defined	with
the	same
name	as	a
keyword

Yes Required

MISRA23_20.
5

20.5	#undef
should	not	be
used

Yes Advisory

MISRA23_20.
6

20.6	Tokens
that	look	like
a
preprocessin
g	directive
shall	not
occur	within
a	macro
argument

Yes Required

MISRA23_20.
7

20.7
Expressions
resulting
from	the
expansion	of
macro
parameters
shall	be
enclosed	in
parentheses

No Required

MISRA23_20.
8

20.8	The
controlling
expression	of
a	#if	or	#elif
preprocessin
g	directive
shall	evaluate
to	0	or	1

No Required

MISRA23_20.
9

20.9	All
identifiers
used	in	the
controlling

No Required

C
Checks

www.scitools.com Page	387/413

controlling

expression	of
#if	or	#elif
preprocessin
g	directives
shall	be
#define'd
before
evaluation

MISRA23_20.
10

20.10	The	#
and	##
operators
should	not	be
used

Yes Advisory

MISRA23_20.
11

20.11	A
macro
parameter
immediately
following	a	#
operator	shall
not
immediately
be	followed
by	a	##
operator

Yes Required

MISRA23_20.
12

20.12	A
macro
parameter
used	as	an
operand	to
the	#	or	##
operators,
which	is	itself
subject	to
further	macro
replacement,
shall	only	be
used	as	an
operand	to
these
operators

No Required

MISRA23_20.
13

20.13	A	line
whose	first

Yes Required

C
Checks

www.scitools.com Page	388/413

whose	first

token	is	#
shall	be	a
valid
preprocessin
g	directive

MISRA23_20.
14

20.14	All
#else,	#elif
and	#endif
preprocessor
directives
shall	reside	in
the	same	file
as	the	#if,
#ifdef	or
#ifndef
directive	to
which	they
are	related

Yes Required

MISRA23_21.
1

21.1	#define
and	#undef
shall	not	be
used	on	a
reserved
identifier	or
reserved
macro	name

Yes Required

MISRA23_21.
2

21.2
Reserved
Identifiers	or
Macros

Yes Required

MISRA23_21.
2.1

21.2.1	The
library
functions
atof,	atoi,	atol
and	atoll
from	library
<cstdlib>
shall	not	be
used

Yes Required

MISRA23_21.
2.2

21.2.2	The
string
handling

Yes Required

C
Checks

www.scitools.com Page	389/413

handling

functions
from
<cstring>,
<cstdlib>,
<cwchar>
and
<cinttypes>
shall	not	be
used

MISRA23_21.
2.3

21.2.3	The
library
function
system	from
<cstdlib>
shall	not	be
used

Yes Required

MISRA23_21.
2.4

21.2.4	The
macro
offsetof	shall
not	be	used

Yes Required

MISRA23_21.
3

21.3	The
memory
allocation
and
deallocation
functions	of
<stdlib.h&g
t;	shall	not	be
used

Yes Required

MISRA23_21.
4

21.4	The
standard
header	file
<setjmp.h>
shall	not	be
used

Yes Required

MISRA23_21.
5

21.5	The
standard
header	file
<signal.h>
shall	not	be
used

Yes Required

MISRA23_21. 21.6	The Yes Required

C
Checks

www.scitools.com Page	390/413

MISRA23_21.

6

21.6	The

Standard
Library	input/
output
functions
shall	not	be
used

MISRA23_21.
6.1

21.6.1
Dynamic
memory
should	not	be
used

Yes Advisory

MISRA23_21.
6.2

21.6.2
Dynamic
memory	shall
be	managed
automatically

Yes Required

MISRA23_21.
6.4

21.6.4	If	a
project
defines
either	a	sized
or	unsized
version	of	a
global
operator
delete,	then
both	shall	be
defined

Yes Required

MISRA23_21.
6.5

21.6.5	A
pointer	to	an
incomplete
class	type
shall	not	be
deleted

Yes Required

MISRA23_21.
7

21.7	The
Standard
Library
functions
atof,	atoi,	atol
and	atoll	of
<stdlib.h>
shall	not	be
used

Yes Required

C
Checks

www.scitools.com Page	391/413

MISRA23_21.
8

21.8	The
Standard
Library
termination
functions	of
<stdlib.h>
shall	not	be
used

Yes Required

MISRA23_21.
9

21.9	The
library
functions
bsearch	and
qsort	of
<stdlib.h>
shall	not	be
used

Yes Required

MISRA23_21.
10

21.10	The
Standard
Library	time
and	date
functions
shall	not	be
used

Yes Required

MISRA23_21.
10.1

21.10.1	The
features	of
<cstdarg>
shall	not	be
used

Yes Required

MISRA23_21.
10.2

21.10.2	The
standard
header	file
<csetjmp>
shall	not	be
used

Yes Required

MISRA23_21.
11

21.11	The
standard
header	file
<tgmath.h>
shall	not	be
used

Yes Advisory

MISRA23_21.
12

21.12	The
standard

Yes Required

C
Checks

www.scitools.com Page	392/413

standard

header	file
<fenv.h>
shall	not	be
used

MISRA23_21.
17

21.17	Use	of
the	string
handling
functions
from
<string.h>
shall	not
result	in
accesses
beyond	the
bounds	of
the	objects
referenced
by	their
pointer
parameters

Yes Mandatory

MISRA23_21.
19

21.19	The
pointers
returned	by
the	Standard
Library
functions
localeconv,
getenv,
setlocale	or,
strerror	shall
only	be	used
as	if	they
have	pointer
to	const-
qualified	type

Yes Mandatory

MISRA23_21.
20

21.20	The
pointer
returned	by
the	C++
Standard
Library
functions

Yes Mandatory

C
Checks

www.scitools.com Page	393/413

functions

asctime,
ctime,
gmtime,
localtime,
localeconv,
getenv,
setlocale	or
strerror	must
not	be	used
following	a
subsequent
call	to	the
same
function

MISRA23_21.
20.3

21.20.3	The
facilities
provided	by
the	standard
header	file
<csignal>
shall	not	be
used

Yes Required

MISRA23_21.
21

21.21	The
Standard
Library
function
system	of
<stdlib.h>
shall	not	be
used

Yes Required

MISRA23_21.
24

21.24	The
random
number
generator
functions	of
<stdlib.h>
shall	not	be
used

Yes Required

MISRA23_21.
26

21.26	The
Standard
Library
function

Yes Required

C
Checks

www.scitools.com Page	394/413

function

mtx_timedloc
k()	shall	only
be	invoked
on	mutex
objects	of
appropriate
mutex	type

MISRA23_22.
1

22.1	All
resources
obtained
dynamically
by	means	of
Standard
Library
functions
shall	be
explicitly
released

No Required

MISRA23_22.
2

22.2	A	block
of	memory
shall	only	be
freed	if	it	was
allocated	by
means	of	a
Standard
Library
function

No Mandatory

MISRA23_22.
3

22.3	The
same	file
shall	not	be
open	for	read
and	write
access	at	the
same	time	on
different
streams

No Required

MISRA23_22.
3.1

22.3.1	The
assert	macro
shall	not	be
used	with	a
constant-
expression

Yes Required

C
Checks

www.scitools.com Page	395/413

MISRA23_22.
4

22.4	There
shall	be	no
attempt	to
write	to	a
stream	which
has	been
opened	as
read-only

No Mandatory

MISRA23_22.
4.1

22.4.1	The
literal	value
zero	shall	be
the	only
value
assigned	to
errno

Yes Required

MISRA23_22.
5

22.5	A
pointer	to	a
FILE	object
shall	not	be
dereferenced

No Mandatory

MISRA23_22.
6

22.6	The
value	of	a
pointer	to	a
FILE	shall	not
be	used	after
the
associated
stream	has
been	closed

No Mandatory

MISRA23_22.
11

22.11	A
thread	that
was
previously
either	joined
or	detached
shall	not	be
subsequently
joined	nor
detached

Yes Required

MISRA23_22.
13

22.13	Thread
objects,
thread

Yes Required

C
Checks

www.scitools.com Page	396/413

thread

synchronizati
on	objects
and	thread-
specific
storage
pointers	shall
have
appropriate
storage
duration

MISRA23_22.
17

22.17	No
thread	shall
unlock	a
mutex	or	call
cnd_wait()	or
cnd_timedwa
it()	for	a
mutex	it	has
not	locked
before

Yes Required

MISRA23_24.
5.1

24.5.1	The
character
handling
functions
from
<cctype>
and
<cwctype>
shall	not	be
used

Yes Required

MISRA23_24.
5.2

24.5.2	The
C++
Standard
Library
functions
memcpy,
memmove
and	memcmp
from
<cstring>
shall	not	be
used

Yes Required

C
Checks

www.scitools.com Page	397/413

MISRA23_25.
5.1

25.5.1	The
setlocale	and
std::locale::gl
obal
functions
shall	not	be
called

Yes Required

MISRA23_25.
5.2

25.5.2	The
pointers
returned	by
the	C++
Standard
Library
functions
localeconv,
getenv,
setlocale	or
strerror	must
only	be	used
as	if	they
have	pointer
to	const-
qualified	type

Yes Mandatory

MISRA23_25.
5.3

25.5.3	The
pointer
returned	by
the	C++
Standard
Library
functions
asctime,
ctime,
gmtime,
localtime,
localeconv,
getenv,
setlocale	or
strerror	must
not	be	used
following	a
subsequent
call	to	the

Yes Mandatory

C
Checks

www.scitools.com Page	398/413

call	to	the

same
function

MISRA23_26.
3.1

26.3.1
std::vector
should	not	be
specialized
with	bool

Yes Advisory

MISRA23_28.
6.1

28.6.1	The
argument	to
std::move
shall	be	a
non-const
lvalue

Yes Required

MISRA23_30.
0.1

30.0.1	The	C
Library	input/
output
functions
shall	not	be
used

Yes Required

MISRA23_30.
0.2

30.0.2	Reads
and	writes	on
the	same	file
stream	shall
be	separated
by	a
positioning
operation

Yes Required

MISRA23_DI
R_1.1

Directive	1.1
Any
implementati
on-defined
behaviour	on
which	the
output	of	the
program
depends
shall	be
documented
and
understood

No Required

MISRA23_DI
R_2.1

Directive	2.1
All	source

Yes Required

C
Checks

www.scitools.com Page	399/413

All	source

files	shall
compile
without	any
compilation
errors

MISRA23_DI
R_3.1

Directive	3.1
All	code	shall
be	traceable
to
documented
requirements

No Required

MISRA23_DI
R_4.1

Directive	4.1
Run-time
failures	shall
be	minimized

No Required

MISRA23_DI
R_4.2

Directive	4.2
All	usage	of
assembly
language
should	be
documented

No Advisory

MISRA23_DI
R_4.3

Directive	4.3
Assembly
language
shall	be
encapsulated
and	isolated.

Yes Required

MISRA23_DI
R_4.4

Directive	4.4
Sections	of
code	should
not	be
"commented
out"

Yes Advisory

MISRA23_DI
R_4.5

Directive	4.5
Identifiers	in
the	same
name	space
with
overlapping
visibility
should	be
typographical

Yes Advisory

C
Checks

www.scitools.com Page	400/413

typographical

ly
unambiguous

MISRA23_DI
R_4.6

Directive	4.6
Typedefs	that
indicate	size
and
signedness
should	be
used	in	place
of	the	basic
numerical
types

Yes Advisory

MISRA23_DI
R_4.7

Directive	4.7
If	a	function
returns	error
information,
then	that
error
information
shall	be
tested

No Required

MISRA23_DI
R_4.8

Directive	4.8
If	a	pointer	to
a	structure	or
union	is
never
dereferenced
within	a
translation
unit,	then	the
implementati
on	of	the
object	should
be	hidden

Yes Advisory

MISRA23_DI
R_4.9

Directive	4.9
A	function
should	be
used	in
preference	to
a	function-
like	macro
where	they

No Advisory

C
Checks

www.scitools.com Page	401/413

where	they

are
interchangea
ble

MISRA23_DI
R_4.10

Directive	4.10
Precautions
shall	be
taken	in
order	to
prevent	the
contents	of	a
header	file
being
included
more	than
once

Yes Required

MISRA23_DI
R_4.11

Directive	4.11
The	validity
of	values
passed	to
library
functions
shall	be
checked

No Required

MISRA23_DI
R_4.12

Directive	4.12
Dynamic
memory
allocation
shall	not	be
used

Yes Required

MISRA23_DI
R_4.13

Directive	4.13
Functions
which	are
designed	to
provide
operations	on
a	resource
should	be
called	in	an
appropriate
sequence

No Advisory

MISRA23_DI
R_5.1

Directive	5.1
There	shall

No Required

C
Checks

www.scitools.com Page	402/413

There	shall

be	no	data
races
between
threads

MISRA23_DI
R_5.2

Directive	5.2
There	shall
be	no
deadlocks
between
threads

No Required

MISRA23_DI
R_5.3

Directive	5.3
There	shall
be	no
dynamic
thread
creation

Yes Required

MSC30-C Do	not	use
the	rand()
function	for
generating
pseudorando
m	numbers

Yes Medium

MSC32-C Properly
seed
pseudorando
m	number
generators

Yes Medium

MSC33-C Do	not	pass
invalid	data
to	the
asctime()
function

Yes High

MSC37-C Ensure	that
control	never
reaches	the
end	of	a	non-
void	function

Yes High

MSC38-C Do	not	treat	a
predefined
identifier	as
an	object	if	it
might	only	be

Yes Low

C
Checks

www.scitools.com Page	403/413

might	only	be

implemented
as	a	macro

MSC39-C Do	not	call
va_arg()	on	a
va_list	that
has	an
indeterminat
e	value

Yes Low

MSC40-C Do	not
violate
constraints

Yes Low

MSC41-C Never	hard
code
sensitive
information

No High

MSC50-CPP Do	not	use
the	rand()
function	for
generating
pseudorando
m	numbers

Yes Medium

MSC51-CPP Ensure	your
random
number
generator	is
properly
seeded

Yes Medium

MSC52-CPP Value-
returning
functions
must	return	a
value	from	all
exit	paths

Yes Medium

MSC53-CPP Do	not	return
from	a
function
declared
[[noreturn]]

Yes Medium

MSC54-CPP A	signal
handler	must
be	a	plain	old
function

Yes High

C
Checks

www.scitools.com Page	404/413

OOP50-CPP Do	not	invoke
virtual
functions
from
constructors
or
destructors

Yes Low

OOP51-CPP Do	not	slice
derived
objects

Yes Low

OOP54-CPP Gracefully
handle	self-
copy
assignment

Yes Low

OOP55-CPP Do	not	use
pointer-to-
member
operators	to
access
nonexistent
members

No High

OOP56-CPP Honor
replacement
handler
requirements

Yes

OOP57-CPP Prefer	special
member
functions	and
overloaded
operators	to
C	Standard
Library
functions

Yes High

OOP58-CPP Copy
operations
must	not
mutate	the
source	object

Yes Low

POS30-C Use	the
readlink()
function
properly

Yes High

C
Checks

www.scitools.com Page	405/413

POS34-C Do	not	call
putenv()	with
a	pointer	to
an	automatic
variable	as
the	argument

Yes High

POS35-C Avoid	race
conditions
while
checking	for
the	existence
of	a	symbolic
link

Yes High

POS36-C Observe
correct
revocation
order	while
relinquishing
privileges

Yes High

POS37-C Ensure	that
privilege
relinquishme
nt	is
successful

Yes High

POS38-C Beware	of
race
conditions
when	using
fork	and	file
descriptors

Yes Medium

POS39-C Use	the
correct	byte
ordering
when
transferring
data	between
systems

Yes Medium

POS44-C Do	not	use
signals	to
terminate
threads

Yes Low

POS47-C Do	not	use Yes Medium

C
Checks

www.scitools.com Page	406/413

Do	not	use

threads	that
can	be
canceled
asynchronou
sly

POS48-C Do	not
unlock	or
destroy
another
POSIX
thread's
mutex

Yes Medium

POS49-C When	data
must	be
accessed	by
multiple
threads,
provide	a
mutex	and
guarantee	no
adjacent	data
is	also
accessed

No Medium

POS50-C Declare
objects
shared
between
POSIX
threads	with
appropriate
storage
durations

Yes Medium

POS51-C Avoid
deadlock
with	POSIX
threads	by
locking	in
predefined
order

Yes Low

POS52-C Do	not
perform
operations

Yes Low

C
Checks

www.scitools.com Page	407/413

operations

that	can
block	while
holding	a
POSIX	lock

POS53-C Do	not	use
more	than
one	mutex
for
concurrent
waiting
operations	on
a	condition
variable

Yes Medium

POS54-C Detect	and
handle	POSIX
library	errors

Yes High

POWER_OF_
TEN_01

1	Simple
Control	Flow

Yes

POWER_OF_
TEN_02

2	Loops	with
Fixed	Limits

Yes

POWER_OF_
TEN_03

3	No
Dynamic
Memory
Allocation

Yes

POWER_OF_
TEN_04

4	Short
Functions

Yes

POWER_OF_
TEN_05

5	Use
Assertion
Statements

Yes

POWER_OF_
TEN_06

6
Declarations
at	Lowest
Scope

Yes

POWER_OF_
TEN_07_A

7A	Check
Parameters
and	Return
Values	-
Ignored
Return
Values

Yes

POWER_OF_
TEN_07_B

7B	Check
Parameters

Yes

C
Checks

www.scitools.com Page	408/413

Parameters

and	Return
Values	-
Unchecked
Parameters
and	Return
Values

POWER_OF_
TEN_08

8	Limit
Preprocessor
Usage

Yes

POWER_OF_
TEN_09_A

9A	Restrict
Pointer
Usage	-
Multiple
Dereferences

Yes

POWER_OF_
TEN_09_B

9B	Restrict
Pointer
Usage	-
Other

Yes

POWER_OF_
TEN_10

10	All
Compiler
Warnings

Yes

PRE30-C Do	not	create
a	universal
character
name
through
concatenatio
n

Yes Low

PRE31-C Avoid	side
effects	in
arguments	to
unsafe
macros

Yes Low

PRE32-C Do	not	use
preprocessor
directives	in
invocations
of	function-
like	macros

Yes Low

RECOMMEN
DED_00

Commented
Out	Code

Yes

RECOMMEN Definitions	in Yes

C
Checks

www.scitools.com Page	409/413

RECOMMEN

DED_01

Definitions	in

Header	Files
RECOMMEN
DED_02

Files	too	long Yes

RECOMMEN
DED_03

Floating
Equality	Test

Yes

RECOMMEN
DED_04

Functions
Too	Long

Yes

RECOMMEN
DED_05

Functions
shall	not	be
declared
implicitly

Yes

RECOMMEN
DED_06

Goto
Statements

Yes

RECOMMEN
DED_07

Macros	shall
not	be
#define'd	or
#undef'd
within	a
block

Yes

RECOMMEN
DED_08

Magic
Numbers

Yes

RECOMMEN
DED_09

Nested
Comments

Yes

RECOMMEN
DED_10

Overly
Complex
Functions

Yes

RECOMMEN
DED_11

Trigraphs
shall	not	be
used

Yes

RECOMMEN
DED_12

Unreachable
Code

Yes

RECOMMEN
DED_13

Unused
Functions

Yes

RECOMMEN
DED_14

Unused	C
and	C++
Local
Variables

Yes

RECOMMEN
DED_15

Unused
Static
Globals

Yes

RECOMMEN Variables Yes

C
Checks

www.scitools.com Page	410/413

RECOMMEN

DED_16

Variables

should	be
commented

RECOMMEN
DED_17

Upper	limit
shall	not	be
modified
within	the
bounds	of
the	loop

Yes

RECOMMEN
DED_19

Comments
Indicating
Future	Fixes

Yes

RECOMMEN
DED_20

Duplicate
Code

Yes

SIG30-C Call	only
asynchronou
s-safe
functions
within	signal
handlers

Yes High

SIG31-C Do	not
access
shared
objects	in
signal
handlers

Yes High

SIG34-C Do	not	call
signal()	from
within
interruptible
signal
handlers

Yes Low

SIG35-C Do	not	return
from	a
computationa
l	exception
signal
handler

No Low

STI_UNUSED Unused
Entities

Yes Recommende
d

High

STR30-C Do	not
attempt	to
modify	string

Yes Low

C
Checks

www.scitools.com Page	411/413

modify	string

literals
STR31-C Guarantee

that	storage
for	strings
has	sufficient
space	for
character
data	and	the
null
terminator

Yes High

STR32-C Null-
terminated
strings
passed	to
library
functions

Yes High

STR34-C Cast
characters	to
unsigned
char	before
converting	to
larger	integer
sizes

No Medium

STR37-C Arguments	to
character-
handling
functions
must	be
representabl
e	as	an
unsigned
char

Yes Low

STR38-C Do	not
confuse
narrow	and
wide
character
strings	and
functions

Yes High

STR50-CPP Guarantee
that	storage
for	strings

Yes High

C
Checks

www.scitools.com Page	412/413

for	strings

has	sufficient
space	for
character
data	and	the
null
terminator

STR51-CPP Do	not
attempt	to
create	a
std::string
from	a	null
pointer

Yes High

STR52-CPP Use	valid
references,
pointers,	and
iterators	to
reference
elements	of	a
basic_string

Yes High

STR53-CPP Range	check
element
access

Yes High

WIN30-C Properly	pair
allocation
and
deallocation
functions

Yes Low

C
Checks

www.scitools.com Page	413/413

