
Checks	by	Severity

Checks

Check	ID Check	Name SupportedSeverity
AC_00 No	Control	Code	Characters Yes
AC_01 No	Direct	or	Indirect	Recursion Yes
AC_HIS_04 Cyclomatic	Complexity	(v(G)) Yes
AC_HIS_13 Statements	Changed	(SCHG) Yes
AC_HIS_14 Statements	Deleted	(SDEL) Yes
AC_HIS_15 New	Statements	(SNEW) Yes
AC_HIS_16 Stability	Index	(S) Yes
DCL00-J Prevent	class	initialization	cycles Yes Low
DCL01-J Do	not	reuse	public	identifiers	from

the	Java	Standard	Library
No Low

DCL02-J Do	not	modify	the	collection's
elements	during	an	enhanced	for
statement

Yes Low

ENV00-J Do	not	sign	code	that	performs
only	unprivileged	operations

No High

ENV01-J Place	all	security-sensitive	code	in
a	single	JAR	and	sign	and	seal	it

No High

ENV02-J Do	not	trust	the	values	of
environment	variables

Yes Low

ENV03-J Do	not	grant	dangerous
combinations	of	permissions

Yes High

ENV04-J Do	not	disable	bytecode
verification

No High

ENV05-J Do	not	deploy	an	application	that
can	be	remotely	monitored

No High

ENV06-J Production	code	must	not	contain Yes High

Java
Checks

www.scitools.com Page	1/20



Production	code	must	not	contain

debugging	entry	points
ERR00-J Do	not	suppress	or	ignore	checked

exceptions
Yes Low

ERR01-J Do	not	allow	exceptions	to	expose
sensitive	information

Yes Medium

ERR02-J Prevent	exceptions	while	logging
data

Yes Medium

ERR03-J Restore	prior	object	state	on
method	failure

Yes Low

ERR04-J Do	not	complete	abruptly	from	a
finally	block

Yes Low

ERR05-J Do	not	let	checked	exceptions
escape	from	a	finally	block

Yes Low

ERR06-J Do	not	throw	undeclared	checked
exceptions

Yes Low

ERR07-J Do	not	throw	RuntimeException,
Exception,	or	Throwable

Yes Low

ERR08-J Do	not	catch	NullPointerException
or	any	of	its	ancestors

Yes Medium

ERR09-J Do	not	allow	untrusted	code	to
terminate	the	JVM

Yes Low

EXP00-J Do	not	ignore	values	returned	by
methods.

Yes Medium

EXP01-J Do	not	use	a	null	in	a	case	where
an	object	is	required

No Low

EXP02-J Do	not	use	the	Object.equals()
method	to	compare	two	arrays.

Yes Low

EXP03-J Do	not	use	the	equality	operators
when	comparing	values	of	boxed
primitives

Yes Low

EXP04-J Do	not	pass	arguments	to	certain
Java	Collections	Framework
methods	that	are	a	different	type
than	the	collection	parameter	type

Yes Low

EXP05-J Do	not	follow	a	write	by	a
subsequent	write	or	read	of	the
same	object	within	an	expression

Yes Low

EXP06-J Expressions	used	in	assertions
must	not	produce	side	effects

Yes Low

FIO00-J Do	not	operate	on	files	in	shared
directories

Yes Medium

Java
Checks

www.scitools.com Page	2/20



FIO01-J Create	files	with	appropriate
access	permissions

Yes Medium

FIO02-J Detect	and	handle	file-related
errors

Yes Medium

FIO03-J Remove	temporary	files	before
termination

Yes Medium

FIO04-J Release	resources	when	they	are
no	longer	needed

Yes Low

FIO05-J Do	not	expose	buffers	or	their
backing	arrays	methods	to
untrusted	code

Yes Medium

FIO06-J Do	not	create	multiple	buffered
wrappers	on	a	single	byte	or
character	stream

No Low

FIO07-J Do	not	let	external	processes	block
on	IO	buffers

No Low

FIO08-J Distinguish	between	characters	or
bytes	read	from	a	stream	and	-1

No High

FIO09-J Do	not	rely	on	the	write()	method
to	output	integers	outside	the
range	0	to	255

Yes Low

FIO10-J Ensure	the	array	is	filled	when
using	read()	to	fill	an	array

Yes Low

FIO12-J Provide	methods	to	read	and	write
little-endian	data

No Low

FIO13-J Do	not	log	sensitive	information
outside	a	trust	boundary

Yes Medium

FIO14-J Perform	proper	cleanup	at	program
termination

Yes Medium

FIO15-J Do	not	reset	a	servlet's	output
stream	after	committing	it

No Low

FIO16-J Canonicalize	path	names	before
validating	them

No Medium

HIS_03 3.	Number	of	Goto
Statements(GOTO)

Yes

HIS_04 4.	Cyclomatic	Complexity	(v(G)) Yes
HIS_13 13.	Statements	Changed	(SCHG) Yes
HIS_14 14.	Statements	Deleted	(SDEL) Yes
HIS_15 15.	New	Statements	(SNEW) Yes
HIS_16 16.	Stability	Index	(S) Yes
IDS00-J Prevent	SQL	Injection Yes High

Java
Checks

www.scitools.com Page	3/20



IDS01-J Normalize	strings	before	validating
them

Yes High

IDS03-J Do	not	log	unsanitized	user	input No Medium
IDS04-J Safely	extract	files	from

ZipInputStream
Yes Low

IDS06-J Exclude	unsanitized	user	input
from	format	strings

Yes Medium

IDS07-J Sanitize	untrusted	data	passed	to
the	Runtime.exec()	method

No High

IDS08-J Sanitize	untrusted	data	included	in
a	regular	expression

Yes Medium

IDS11-J Perform	any	string	modifications
before	validation

Yes High

IDS14-J Do	not	trust	the	contents	of	hidden
form	fields

No High

IDS16-J Prevent	XML	Injection Yes High
IDS17-J Prevent	XML	External	Entity

Attacks
No Medium

JAVA_01 All	fixed	values	will	be	defined	final.Yes
JAVA_02 Unused	Instance	Variables. Yes
JAVA_03 Single	exit	point	at	end Yes
JAVA_04 Defined	methods	shall	be	called	at

least	once.
Yes

JAVA_05 Unused	Local	Variables Yes
JAVA_06 Package	names	shall	be	in	all

lowercase	alphabetic	characters
and	integers

Yes

JAVA_07 If	multiple	classes	are	imported,
the	list	shall	be	imported
alphabetically	

Yes

JAVA_08 Each	package	group	shall	be
separated	with	a	newline	

Yes

JAVA_09 Each	Java	class	shall	be	assigned
to	a	named	package	

Yes

JAVA_10 Use	package	names	instead	of
prefixes	on	class	identifiers	

Yes

JAVA_11 A	class	shall	be	declared	an
interface	if	no	method	of	the	class
is	implemented.	

Yes

JAVA_12 If	a	constructor	catches	an
exception	that	causes	the	failure	of

Yes

Java
Checks

www.scitools.com Page	4/20



exception	that	causes	the	failure	of

the	object,	that	exception	shall	be
thrown.	

JAVA_13 Order	class	definitions	by	scope	 Yes
JAVA_14 Capitalize	classes	and	interfaces	 Yes
JAVA_15 Method	names	should	be

camelCase	
Yes

JAVA_16 Prepend	method	names	with	"get"
if	they	return	data	member	values	

Yes

JAVA_17 Prepend	method	names	with	"set"
if	they	assign	data	member	values	

Yes

JAVA_18 Any	method	that	tests	the	truth	or
falsity	of	a	condition	shall	be
prepended	with	a	boolean
expression

Yes

JAVA_19 A	method	definition	statement	and
member	(nested)	class	definition
statement	shall	begin	at	the
standard	indentation	relative	to	the
enclosing	class	definition
statement.

Yes

JAVA_20 The	last	call	of	the	finalizer	shall	be
to	super.finalize(),	unless	Object	is
the	immediate	superclass

Yes

JAVA_21 Finalizers	shall	catch	and	manage
their	own	exceptions	as	well	as	any
propagated	exceptions	that	may	be
thrown	from	functions	called	by	the
finalizer.

Yes

JAVA_22 A	variableʼs	use	shall	not	be
redefined	within	a	method.

Yes

JAVA_23 Only	one	variable	shall	be	specified
for	every	declaration	key	word.

Yes

JAVA_24 Each	new	block	shall	be	indented
one	increment	further	than	its
parent	block.

Yes

JAVA_25 Each	statement	shall	be	indented
to	the	level	of	its	block.

Yes

JAVA_26 There	shall	be	at	most	one
statement	per	line.

Yes

JAVA_27 A	wrapped	line	shall	be	indented
one	increment	further	than	its

Yes

Java
Checks

www.scitools.com Page	5/20



one	increment	further	than	its

originating	line.
JAVA_28 A	new	instance	of

java.lang.Exception	shall	not	be
thrown.	

Yes

JAVA_29 Braces	shall	be	used	for	all	control
structures,	even	if	there	is	only	one
statement.	

Yes

JAVA_30 White	space	before	a	comma	or
semicolon	shall	not	be	used.

Yes

JAVA_31 The	loop	control	variable	shall	not
be	modified	in	the	body	of	a	for
loop.

Yes

JAVA_32 The	last	choice	of	a	switch	or	case
statement	shall	end	with	a	break
statement.

Yes

JAVA_33 Statements	under	case	labels	shall
be	indented	one	level.

Yes

JAVA_34 In	a	switch	statement,	when	a
default	case	is	presented,	it	shall
be	the	last	case.

Yes

JAVA_35 For	a	do-while	loop,	the	ending
brace	shall	be	on	the	same	line	as
the	while.

Yes

JAVA_36 Ternary	operators	shall	not	be
nested	inside	other	ternary
operators.	

Yes

JAVA_37 Calculations	that	resolve	to	the
same	value	shall	not	be	performed
inside	a	loop.	

Yes

JAVA_38 For	the	control	structures	the
terminating	brace	shall	appear	on	a
separate	line	at	the	same
indentation	as	the	initiating
keyword.	

Yes

JAVA_39 White	space	shall	not	be	used:
between	the	name	of	an	array	and
open	bracket	that	introduces	its
index	(e.g.,	array[i]),	or	between
unary	operators	and	the	objects
they	operate	on	(e.g.,	-1).	

Yes

JAVA_40 Spaces	shall	be	placed	after Yes

Java
Checks

www.scitools.com Page	6/20



Spaces	shall	be	placed	after

commas.
JAVA_41 Any	method	that	returns	the	object

converted	to	another	type	shall	be
prepended	with	the	word	"to"	(e.g.,
c.toString()).	

Yes

JAVA_42 The	end	of	a	closing	brace	shall	be
at	the	same	indentation	as	the
blocks'	declaring	line.	

Yes

JAVA_43 Method	declarations	shall	have	at
least	one	blank	line	between	them
to	improve	readability.	

Yes

JAVA_44 Spaces	shall	be	placed	around	all
binary	operators.	

Yes

JAVA_DCL00 Prevent	class	initialization	cycles Yes
JAVA_DCL02 Do	not	modify	the	collection's

elements	during	an	enhanced	for
statement

Yes

JAVA_ENV02 Do	not	trust	the	values	of
environment	variables

Yes

JAVA_ENV03 Do	not	grant	dangerous
combinations	of	permissions

Yes

JAVA_ENV06 Production	code	must	not	contain
debugging	entry	points

Yes

JAVA_ERR00 Do	not	suppress	or	ignore	checked
exceptions

Yes

JAVA_ERR01 Do	not	allow	exceptions	to	expose
sensitive	information

Yes

JAVA_ERR02 Prevent	exceptions	while	logging
data

Yes

JAVA_ERR03 Restore	prior	object	state	on
method	failure

Yes

JAVA_ERR04 Do	not	complete	abruptly	from	a
finally	block

Yes

JAVA_ERR05 Do	not	let	checked	exceptions
escape	from	a	finally	block

Yes

JAVA_ERR06 Do	not	throw	undeclared	checked
exceptions

Yes

JAVA_ERR07 Do	not	throw	RuntimeException,
Exception,	or	Throwable

Yes

JAVA_ERR08 Do	not	catch	NullPointerException
or	any	of	its	ancestors

Yes

Java
Checks

www.scitools.com Page	7/20



JAVA_ERR09 Do	not	allow	untrusted	code	to
terminate	the	JVM

Yes

JAVA_EXP00 Do	not	ignore	values	returned	by
methods.

Yes

JAVA_EXP02 Do	not	use	the	Object.equals()
method	to	compare	two	arrays.

Yes

JAVA_EXP03 Do	not	use	the	equality	operators
when	comparing	values	of	boxed
primitives

Yes

JAVA_EXP04 Do	not	pass	arguments	to	certain
Java	Collections	Framework
methods	that	are	a	different	type
than	the	collection	parameter	type

Yes

JAVA_EXP05 Do	not	follow	a	write	by	a
subsequent	write	or	read	of	the
same	object	within	an	expression

Yes

JAVA_EXP06 Expressions	used	in	assertions
must	not	produce	side	effects

Yes

JAVA_FIO00 Do	not	operate	on	files	in	shared
directories

Yes

JAVA_FIO01 Create	files	with	appropriate
access	permissions

Yes

JAVA_FIO02 Detect	and	handle	file-related
errors

Yes

JAVA_FIO03 Remove	temporary	files	before
termination

Yes

JAVA_FIO04 Release	resources	when	they	are
no	longer	needed

Yes

JAVA_FIO05 Do	not	expose	buffers	or	their
backing	arrays	methods	to
untrusted	code

Yes

JAVA_FIO09 Do	not	rely	on	the	write()	method
to	output	integers	outside	the
range	0	to	255

Yes

JAVA_FIO10 Ensure	the	array	is	filled	when
using	read()	to	fill	an	array

Yes

JAVA_FIO13 Do	not	log	sensitive	information
outside	a	trust	boundary

Yes

JAVA_FIO14 Perform	proper	cleanup	at	program
termination

Yes

JAVA_IDS00 Prevent	SQL	Injection Yes

Java
Checks

www.scitools.com Page	8/20



JAVA_IDS01 Normalize	strings	before	validating
them

Yes

JAVA_IDS04 Safely	extract	files	from
ZipInputStream

Yes

JAVA_IDS06 Exclude	unsanitized	user	input
from	format	strings

Yes

JAVA_IDS08 Sanitize	untrusted	data	included	in
a	regular	expression

Yes

JAVA_IDS11 Perform	any	string	modifications
before	validation

Yes

JAVA_IDS16 Prevent	XML	Injection Yes
JAVA_JNI00 Define	wrappers	around	native

methods
Yes

JAVA_LCK00 Use	private	final	lock	objects	to
synchronize	classes	that	may
interact	with	untrusted	code

Yes

JAVA_LCK01 Do	not	synchronize	on	objects	that
may	be	reused

Yes

JAVA_LCK02 Do	not	synchronize	on	the	class
object	returned	by	getClass()

Yes

JAVA_LCK04 Do	not	synchronize	on	a	collection
view	if	the	backing	collection	is
accessible

Yes

JAVA_LCK05 Synchronize	access	to	static	fields
that	can	be	modified	by	untrusted
code

Yes

JAVA_LCK06 Do	not	use	an	instance	lock	to
protect	shared	static	data

Yes

JAVA_LCK07 Avoid	deadlock	by	requesting	and
releasing	locks	in	the	same	order

Yes

JAVA_LCK08 Ensure	actively	held	locks	are
released	on	exceptional	conditions

Yes

JAVA_LCK09 Do	not	perform	operations	that	can
block	while	holding	a	lock

Yes

JAVA_LCK10 Use	a	correct	form	of	the	double-
checked	locking	idiom

Yes

JAVA_LCK11 Avoid	client-side	locking	when
using	classes	that	do	not	commit
to	their	locking	strategy

Yes

JAVA_MET00 Validate	method	arguments Yes
JAVA_MET01 Never	use	assertions	to	validate Yes

Java
Checks

www.scitools.com Page	9/20



Never	use	assertions	to	validate

method	arguments
JAVA_MET02 Do	not	use	deprecated	or	obsolete

classes	or	methods
Yes

JAVA_MET03 Methods	that	perform	a	security
check	must	be	declared	private	or
final.

Yes

JAVA_MET04 Do	not	increase	the	accessibility	of
overridden	or	hidden	methods

Yes

JAVA_MET05 Ensure	that	constructors	do	not
call	overridable	methods

Yes

JAVA_MET06 Do	not	invoke	overridable	methods
in	clone()

Yes

JAVA_MET07 Never	declare	a	class	method	that
hides	a	method	declared	in	a
superclass	or	superinterface

Yes

JAVA_MET08 Preserve	the	equality	contract
when	overriding	the	equals()
method

Yes

JAVA_MET09 Classes	that	define	an	equals()
method	must	also	define	a
hashCode()	method

Yes

JAVA_MET10 Follow	the	general	contract	when
implementing	the	compareTo()
method

Yes

JAVA_MET11 Ensure	that	keys	used	in
comparison	operations	are
immutable

Yes

JAVA_MET12 Do	not	use	finalizers Yes
JAVA_MSC00 Use	SSLSocket	rather	than	Socket

for	secure	data	exchange
Yes

JAVA_MSC01 Do	not	use	an	empty	infinite	loop Yes
JAVA_MSC02 Generate	strong	random	numbers Yes
JAVA_N000 Naming	Convention:	Classes Yes
JAVA_N001 Naming	Convention:	Files Yes
JAVA_N002 Naming	Convention:	Interface Yes
JAVA_N003 Naming	Convention:	Methods Yes
JAVA_N004 Naming	Convention:	Packages Yes
JAVA_N005 Naming	Convention:	Parameters Yes
JAVA_N006 Naming	Convention:	Variables Yes
JAVA_N007 Constants	shall	be	in	all	uppercase,

with	underscores	separating	each
Yes

Java
Checks

www.scitools.com Page	10/20



with	underscores	separating	each

component	word
JAVA_NUM00 Detect	or	prevent	integer	overflow Yes
JAVA_NUM02 Ensure	that	division	and	remainder

operations	do	not	result	in	divide-
by-zero	errors

Yes

JAVA_NUM07 Do	not	attempt	comparisons	with
NaN

Yes

JAVA_NUM09 Do	not	use	floating-point	variables
as	loop	counters

Yes

JAVA_NUM10 Do	not	construct	BigDecimal
objects	from	floating-point	literals

Yes

JAVA_NUM11 Do	not	compare	or	inspect	the
string	representation	of	floating-
point	values

Yes

JAVA_NUM12 Ensure	conversions	of	numeric
types	to	narrower	types	do	not
result	in	lost	or	misinterpreted	data

Yes

JAVA_NUM13 Avoid	loss	of	precision	when
converting	primitive	integers	to
floating-point

Yes

JAVA_OBJ01 Limit	accessibility	of	fields Yes
JAVA_OBJ04 Provide	mutable	classes	with	copy

functionality	to	safely	allow	passing
instances	to	untrusted	code

Yes

JAVA_OBJ05 Do	not	return	references	to	private
mutable	class	members

Yes

JAVA_OBJ07 Sensitive	classes	must	not	let
themselves	be	copied

Yes

JAVA_OBJ08 Do	not	expose	private	members	of
an	outer	class	from	within	a	nested
class

Yes

JAVA_OBJ09 Compare	classes	and	not	class
names

Yes

JAVA_OBJ10 Do	not	use	public	static	nonfinal
fields

Yes

JAVA_OBJ11 Be	wary	of	letting	constructors
throw	exceptions

Yes

JAVA_OBJ13 Ensure	that	references	to	mutable
objects	are	not	exposed

Yes

JAVA_SEC01 Do	not	allow	tainted	variables	in
privileged	blocks

Yes

Java
Checks

www.scitools.com Page	11/20



JAVA_SEC07 Call	the	superclass's
getPermissions()	method	when
writing	a	custom	class	loader

Yes

JAVA_SER01 Do	not	deviate	from	the	proper
signatures	of	serialization	methods

Yes

JAVA_SER04 Do	not	allow	serialization	and
deserialization	to	bypass	the
security	manager

Yes

JAVA_SER05 Do	not	serialize	instances	of	inner
classes

Yes

JAVA_SER06 Make	defensive	copies	of	private
mutable	components	during
deserialization

Yes

JAVA_SER07 Do	not	use	the	default	serialized
form	for	classes	with
implementation-defined	invariants

Yes

JAVA_SER09 Do	not	invoke	overridable	methods
from	the	readObject()	method

Yes

JAVA_SER12 Prevent	deserialization	of
untrusted	data

Yes

JAVA_STR01 Do	not	assume	that	a	Java	char
fully	represents	a	Unicode	code
point

Yes

JAVA_STR03 Do	not	encode	noncharacter	data
as	a	string

Yes

JAVA_THI00 Do	not	invoke	Thread.run() Yes
JAVA_THI01 Do	not	invoke	ThreadGroup

methods
Yes

JAVA_THI02 Notify	all	waiting	threads	rather
than	a	single	thread.

Yes

JAVA_THI03 Always	invoke	wait()	and	await()
methods	inside	a	loop

Yes

JAVA_THI04 Ensure	that	threads	performing
blocking	operations	can	be
terminated

Yes

JAVA_THI05 Do	not	use	Thread.stop()	to
terminate	threads.

Yes

JAVA_TPS00 Use	thread	pools	to	enable
graceful	degradation	of	service
during	traffic	bursts

Yes

JAVA_TPS01 Do	not	execute	interdependent Yes

Java
Checks

www.scitools.com Page	12/20



Do	not	execute	interdependent

tasks	in	a	bounded	thread	pool
JAVA_TPS02 Ensure	that	tasks	submitted	to	a

thread	pool	are	interruptible
Yes

JAVA_TPS03 Ensure	that	tasks	executing	in	a
thread	pool	do	not	fail	silently

Yes

JAVA_TPS04 Ensure	ThreadLocal	variables	are
reinitialized	when	using	thread
pools

Yes

JAVA_TSM00 Do	not	override	thread-safe
methods	with	methods	that	are	not
thread-safe

Yes

JAVA_TSM01 Do	not	let	the	this	reference
escape	during	object	construction

Yes

JAVA_TSM02 Do	not	use	background	threads
during	class	initialization

Yes

JAVA_TSM03 Do	not	publish	partially	initialized
objects

Yes

JAVA_VNA00 Ensure	visibility	when	accessing
shared	primitive	variables

Yes

JAVA_VNA01 Ensure	visibility	of	shared
references	to	immutable	objects

Yes

JAVA_VNA02 Ensure	that	compound	operations
on	shared	variables	are	atomic

Yes

JAVA_VNA03 Do	not	assume	that	a	group	of	calls
to	independently	atomic	methods
is	atomic

Yes

JAVA_VNA04 Ensure	that	calls	to	chained
methods	are	atomic

Yes

JAVA_VNA05 Ensure	atomicity	when	reading	and
writing	64-bit	values

Yes

JNI00-J Define	wrappers	around	native
methods

Yes Medium

LCK00-J Use	private	final	lock	objects	to
synchronize	classes	that	may
interact	with	untrusted	code

Yes Low

LCK01-J Do	not	synchronize	on	objects	that
may	be	reused

Yes Medium

LCK02-J Do	not	synchronize	on	the	class
object	returned	by	getClass()

Yes Medium

LCK03-J Do	not	synchronize	on	the	intrinsic
locks	of	high-level	concurrency

No Medium

Java
Checks

www.scitools.com Page	13/20



locks	of	high-level	concurrency

objects
LCK04-J Do	not	synchronize	on	a	collection

view	if	the	backing	collection	is
accessible

Yes Low

LCK05-J Synchronize	access	to	static	fields
that	can	be	modified	by	untrusted
code

Yes Low

LCK06-J Do	not	use	an	instance	lock	to
protect	shared	static	data

Yes Medium

LCK07-J Avoid	deadlock	by	requesting	and
releasing	locks	in	the	same	order

Yes Low

LCK08-J Ensure	actively	held	locks	are
released	on	exceptional	conditions

Yes Low

LCK09-J Do	not	perform	operations	that	can
block	while	holding	a	lock

Yes Low

LCK10-J Use	a	correct	form	of	the	double-
checked	locking	idiom

Yes Low

LCK11-J Avoid	client-side	locking	when
using	classes	that	do	not	commit
to	their	locking	strategy

Yes Low

MET00-J Validate	method	arguments Yes High
MET01-J Never	use	assertions	to	validate

method	arguments
Yes Medium

MET02-J Do	not	use	deprecated	or	obsolete
classes	or	methods

Yes Low

MET03-J Methods	that	perform	a	security
check	must	be	declared	private	or
final.

Yes Medium

MET04-J Do	not	increase	the	accessibility	of
overridden	or	hidden	methods

Yes Medium

MET05-J Ensure	that	constructors	do	not
call	overridable	methods

Yes Medium

MET06-J Do	not	invoke	overridable	methods
in	clone()

Yes Medium

MET07-J Never	declare	a	class	method	that
hides	a	method	declared	in	a
superclass	or	superinterface

Yes Low

MET08-J Preserve	the	equality	contract
when	overriding	the	equals()
method

Yes Low

MET09-J Classes	that	define	an	equals() Yes Low

Java
Checks

www.scitools.com Page	14/20



Classes	that	define	an	equals()

method	must	also	define	a
hashCode()	method

MET10-J Follow	the	general	contract	when
implementing	the	compareTo()
method

Yes Medium

MET11-J Ensure	that	keys	used	in
comparison	operations	are
immutable

Yes Low

MET12-J Do	not	use	finalizers Yes Medium
MET13-J Do	not	assume	that	reassigning

method	arguments	modifies	the
calling	environment

No Medium

METRIC_00 Program	Unit	Call	Count Yes
METRIC_01 Program	Unit	Callby	Count Yes
METRIC_02 Program	Unit	Comment	to	Code

Ratio
Yes

METRIC_03 Program	Unit	Cyclomatic
Complexity

Yes

METRIC_04 Program	Unit	Max	Length Yes
METRIC_05 Program	Unit	Max	Nesting	Depth Yes
METRIC_06 Program	Unit	Parameters	Count Yes
METRIC_07 Program	Unit	Path	Count Yes
METRIC_08 Program	Unit	Statement	Count Yes
METRIC_09 Coupling	Between	Object	Classes Yes
METRIC_13 Maintainability	Index Yes
MSC00-J Use	SSLSocket	rather	than	Socket

for	secure	data	exchange
Yes Medium

MSC01-J Do	not	use	an	empty	infinite	loop Yes Low
MSC02-J Generate	strong	random	numbers Yes High
MSC03-J Never	hard	code	sensitive

information
No High

MSC04-J Do	not	leak	memory No Low
MSC05-J Do	not	exhaust	heap	space No Low
MSC06-J Do	not	modify	the	underlying

collection	when	an	iteration	is	in
progress

No Low

MSC07-J Prevent	multiple	instantiations	of
singleton	objects

No Low

NUM00-J Detect	or	prevent	integer	overflow Yes Medium
NUM01-J Do	not	perform	bitwise	and

arithmetic	operations	on	the	same
No Medium

Java
Checks

www.scitools.com Page	15/20



arithmetic	operations	on	the	same

data
NUM02-J Ensure	that	division	and	remainder

operations	do	not	result	in	divide-
by-zero	errors

Yes Low

NUM03-J Use	integer	types	that	can	fully
represent	the	possible	range	of
unsigned	data

No Low

NUM04-J Do	not	use	floating-point	numbers
if	precise	computation	is	required

No Low

NUM07-J Do	not	attempt	comparisons	with
NaN

Yes Low

NUM08-J Check	floating-point	inputs	for
exceptional	values

No Low

NUM09-J Do	not	use	floating-point	variables
as	loop	counters

Yes Low

NUM10-J Do	not	construct	BigDecimal
objects	from	floating-point	literals

Yes Low

NUM11-J Do	not	compare	or	inspect	the
string	representation	of	floating-
point	values

Yes Low

NUM12-J Ensure	conversions	of	numeric
types	to	narrower	types	do	not
result	in	lost	or	misinterpreted	data

Yes Low

NUM13-J Avoid	loss	of	precision	when
converting	primitive	integers	to
floating-point

Yes Low

NUM14-J Use	shift	operators	correctly No Low
OBJ01-J Limit	accessibility	of	fields Yes Medium
OBJ02-J Preserve	dependencies	in

subclasses	when	changing
superclasses

No Medium

OBJ03-J Prevent	heap	pollution No Low
OBJ04-J Provide	mutable	classes	with	copy

functionality	to	safely	allow	passing
instances	to	untrusted	code

Yes Low

OBJ05-J Do	not	return	references	to	private
mutable	class	members

Yes High

OBJ06-J Defensively	copy	mutable	inputs
and	mutable	internal	components	

No Medium

OBJ07-J Sensitive	classes	must	not	let
themselves	be	copied

Yes Medium

Java
Checks

www.scitools.com Page	16/20



OBJ08-J Do	not	expose	private	members	of
an	outer	class	from	within	a	nested
class

Yes Medium

OBJ09-J Compare	classes	and	not	class
names

Yes High

OBJ10-J Do	not	use	public	static	nonfinal
fields

Yes Medium

OBJ11-J Be	wary	of	letting	constructors
throw	exceptions

Yes High

OBJ13-J Ensure	that	references	to	mutable
objects	are	not	exposed

Yes Medium

RECOMMENDED_02Files	too	long Yes
RECOMMENDED_04Functions	Too	Long Yes
RECOMMENDED_06Goto	Statements Yes
RECOMMENDED_10 Overly	Complex	Functions Yes
RECOMMENDED_12 Unreachable	Code Yes
RECOMMENDED_13 Unused	Functions Yes
RECOMMENDED_18 Unused	Local	Variables Yes
RECOMMENDED_19 Comments	Indicating	Future	Fixes Yes
RECOMMENDED_20Duplicate	Code Yes
SEC00-J Do	not	allow	privileged	blocks	to

leak	sensitive	information	across	a
trust	boundary

No Medium

SEC01-J Do	not	allow	tainted	variables	in
privileged	blocks

Yes High

SEC02-J Do	not	base	security	checks	on
untrusted	sources

No High

SEC03-J Do	not	load	trusted	classes	after
allowing	untrusted	code	to	load
arbitrary	classes

No High

SEC04-J Protect	sensitive	operations	with
security	manager	checks

No High

SEC05-J Do	not	use	reflection	to	increase
accessibility	of	classes,	methods,
or	fields

No High

SEC06-J Do	not	rely	on	the	default
automatic	signature	verification
provided	by	URLClassLoader	and
java.util.jar

No High

SEC07-J Call	the	superclass's
getPermissions()	method	when

Yes High

Java
Checks

www.scitools.com Page	17/20



getPermissions()	method	when

writing	a	custom	class	loader
SER00-J Enable	serialization	compatibility

during	class	evolution
No Low

SER01-J Do	not	deviate	from	the	proper
signatures	of	serialization	methods

Yes High

SER02-J Sign	then	seal	objects	before
sending	them	outside	a	trust
boundary

No Medium

SER03-J Do	not	serialize	unencrypted
sensitive	data

No Medium

SER04-J Do	not	allow	serialization	and
deserialization	to	bypass	the
security	manager

Yes High

SER05-J Do	not	serialize	instances	of	inner
classes

Yes Medium

SER06-J Make	defensive	copies	of	private
mutable	components	during
deserialization

Yes Low

SER07-J Do	not	use	the	default	serialized
form	for	classes	with
implementation-defined	invariants

Yes Medium

SER08-J Minimize	privileges	before
deserializing	from	a	privileged
context

No High

SER09-J Do	not	invoke	overridable	methods
from	the	readObject()	method

Yes Low

SER10-J Avoid	memory	and	resource	leaks
during	serialization

No Low

SER11-J Prevent	overwriting	of
externalizable	objects

No Low

SER12-J Prevent	deserialization	of
untrusted	data

Yes High

STR00-J Don't	form	strings	containing
partial	characters	from	variable-
width	encodings

No Low

STR01-J Do	not	assume	that	a	Java	char
fully	represents	a	Unicode	code
point

Yes Low

STR02-J Specify	an	appropriate	locale	when
comparing	locale-dependent	data

No Medium

STR03-J Do	not	encode	noncharacter	data Yes Low

Java
Checks

www.scitools.com Page	18/20



Do	not	encode	noncharacter	data

as	a	string
STR04-J Use	compatible	character

encodings	when	communicating
string	data	between	JVMs

No Low

THI00-J Do	not	invoke	Thread.run() Yes Low
THI01-J Do	not	invoke	ThreadGroup

methods
Yes Low

THI02-J Notify	all	waiting	threads	rather
than	a	single	thread.

Yes Low

THI03-J Always	invoke	wait()	and	await()
methods	inside	a	loop

Yes Low

THI04-J Ensure	that	threads	performing
blocking	operations	can	be
terminated

Yes Low

THI05-J Do	not	use	Thread.stop()	to
terminate	threads.

Yes Low

TPS00-J Use	thread	pools	to	enable
graceful	degradation	of	service
during	traffic	bursts

Yes Low

TPS01-J Do	not	execute	interdependent
tasks	in	a	bounded	thread	pool

Yes Low

TPS02-J Ensure	that	tasks	submitted	to	a
thread	pool	are	interruptible

Yes Low

TPS03-J Ensure	that	tasks	executing	in	a
thread	pool	do	not	fail	silently

Yes Low

TPS04-J Ensure	ThreadLocal	variables	are
reinitialized	when	using	thread
pools

Yes Medium

TSM00-J Do	not	override	thread-safe
methods	with	methods	that	are	not
thread-safe

Yes Low

TSM01-J Do	not	let	the	this	reference
escape	during	object	construction

Yes Medium

TSM02-J Do	not	use	background	threads
during	class	initialization

Yes Low

TSM03-J Do	not	publish	partially	initialized
objects

Yes Medium

VNA00-J Ensure	visibility	when	accessing
shared	primitive	variables

Yes Medium

VNA01-J Ensure	visibility	of	shared
references	to	immutable	objects

Yes Low

Java
Checks

www.scitools.com Page	19/20



VNA02-J Ensure	that	compound	operations
on	shared	variables	are	atomic

Yes Medium

VNA03-J Do	not	assume	that	a	group	of	calls
to	independently	atomic	methods
is	atomic

Yes Low

VNA04-J Ensure	that	calls	to	chained
methods	are	atomic

Yes Low

VNA05-J Ensure	atomicity	when	reading	and
writing	64-bit	values

Yes Low

Java
Checks

www.scitools.com Page	20/20


