
This	standard	provides	rules	for	secure	coding	in	the	C++	programming	language.

The	rules	and	recommendations	in	this	standard	are	a	work	in	progress	and
reflect	the	current	thinking	of	the	secure	coding	community.	As	rules	and
recommendations	mature,	they	are	published	in	report	or	book	form	as	official
releases.	These	releases	are	issued	as	dictated	by	the	needs	and	interests	of	the
secure	software	development	community.	

The	CERT	C++	Coding	Standard	does	not	currently	expose	any
recommendations;	all	C++	recommendations	have	been	removed	(moved	to	The
Void	section)	due	to	quality	concerns	pending	further	review	and	development.	

The	list	of	rules	and	recommendations	in	this	tool	were	last	updated	on
2023/05/23.

Checks	by	Severity

Checks

Check	ID Check	Name SupportedSeverity
CON50-CPPDo	not	destroy	a	mutex	while	it	is	locked Yes Medium
CON51-CPP Ensure	actively	held	locks	are	released	on

exceptional	conditions
Yes Low

CON52-CPP Prevent	data	races	when	accessing	bit-
fields	from	multiple	threads

Yes Medium

CON53-CPP Avoid	deadlock	by	locking	in	a	predefined
order

No Low

CON54-CPPWrap	functions	that	can	spuriously	wake
up	in	a	loop

Yes Medium

CON55-CPP Preserve	thread	safety	and	liveness	when
using	condition	variables

Yes Low

CON56-CPPDo	not	speculatively	lock	a	non-recursive Yes Low

SEI	CERT	C++
Checks

www.scitools.com Page	1/5



Do	not	speculatively	lock	a	non-recursive

mutex	that	is	already	owned	by	the	calling
thread

CTR50-CPP Guarantee	that	container	indices	and
iterators	are	within	the	valid	range

Yes High

CTR51-CPP Use	valid	references,	pointers,	and
iterators	to	reference	elements	of	a
container

Yes High

CTR52-CPP Guarantee	that	library	functions	do	not
overflow

Yes High

CTR53-CPP Use	valid	iterator	ranges Yes High
CTR54-CPP Do	not	subtract	iterators	that	do	not	refer

to	the	same	container
Yes Medium

CTR55-CPP Do	not	use	an	additive	operator	on	an
iterator	if	the	result	would	overflow

Yes

CTR56-CPP Do	not	use	pointer	arithmetic	on
polymorphic	objects

Yes High

CTR57-CPP Provide	a	valid	ordering	predicate Yes Low
CTR58-CPP Predicate	function	objects	should	not	be

mutable
Yes Low

DCL50-CPP Do	not	define	a	C-style	variadic	function Yes High
DCL52-CPP Never	qualify	a	reference	type	with	const

or	volatile
Yes Low

DCL53-CPP Do	not	write	syntactically	ambiguous
declarations

Yes Low

DCL54-CPP Overload	allocation	and	deallocation
functions	as	a	pair	in	the	same	scope

Yes Low

DCL55-CPP Avoid	information	leakage	when	passing	a
class	object	across	a	trust	boundary

No Low

DCL56-CPP Avoid	cycles	during	initialization	of	static
objects

Yes Low

DCL57-CPP Do	not	let	exceptions	escape	from
destructors	or	deallocation	functions

Yes Low

DCL58-CPP Do	not	modify	the	standard	namespaces Yes High
DCL59-CPP Do	not	define	an	unnamed	namespace	in	a

header	file
Yes Medium

DCL60-CPP Obey	the	one-definition	rule Yes High
ERR50-CPP Do	not	abruptly	terminate	the	program Yes Low
ERR51-CPP Handle	all	exceptions Yes Low
ERR52-CPP Do	not	use	setjmp()	or	longjmp() Yes Low
ERR53-CPP Do	not	reference	base	classes	or	class

data	members	in	a	constructor	or
Yes Low

SEI	CERT	C++
Checks

www.scitools.com Page	2/5



data	members	in	a	constructor	or

destructor	function-try-block	handler
ERR54-CPP Catch	handlers	should	order	their

parameter	types	from	most	derived	to	least
derived

Yes Medium

ERR55-CPP Honor	exception	specifications Yes Low
ERR57-CPP Do	not	leak	resources	when	handling

exceptions
Yes Low

ERR58-CPP Handle	all	exceptions	thrown	before	main()
begins	executing

Yes Low

ERR59-CPP Do	not	throw	an	exception	across
execution	boundaries

Yes High

ERR60-CPP Exception	objects	must	be	nothrow	copy
constructible

Yes Low

ERR61-CPP Catch	exceptions	by	lvalue	reference Yes Low
ERR62-CPP Detect	errors	when	converting	a	string	to	a

number
Yes Medium

EXP50-CPP Do	not	depend	on	the	order	of	evaluation
for	side	effects

Yes Medium

EXP51-CPP Do	not	delete	an	array	through	a	pointer	of
the	incorrect	type

Yes Low

EXP52-CPP Do	not	rely	on	side	effects	in	unevaluated
operands

Yes Low

EXP53-CPP Do	not	read	uninitialized	memory Yes High
EXP54-CPP Do	not	access	an	object	outside	of	its

lifetime
Yes High

EXP55-CPP Do	not	access	a	cv-qualified	object
through	a	cv-unqualified	type

Yes Medium

EXP56-CPP Do	not	call	a	function	with	a	mismatched
language	linkage

No Low

EXP57-CPP Do	not	cast	or	delete	pointers	to
incomplete	classes

Yes Medium

EXP58-CPP Pass	an	object	of	the	correct	type	to
va_start

Yes Medium

EXP59-CPP Use	offsetof()	on	valid	types	and	members Yes Medium
EXP61-CPP A	lambda	object	must	not	outlive	any	of	its

reference	captured	objects
Yes High

EXP62-CPP Do	not	access	the	bits	of	an	object
representation	that	are	not	part	of	the
object's	value	representation

Yes High

EXP63-CPP Do	not	rely	on	the	value	of	a	moved-from
object

Yes Medium

SEI	CERT	C++
Checks

www.scitools.com Page	3/5



FIO50-CPP Do	not	alternately	input	and	output	from	a
file	stream	without	an	intervening
positioning	call

Yes Low

FIO51-CPP Close	files	when	they	are	no	longer	neededYes Medium
INT50-CPP Do	not	cast	to	an	out-of-range

enumeration	value
Yes Medium

MEM50-CPPDo	not	access	freed	memory No High
MEM51-CPP Properly	deallocate	dynamically	allocated

resources
Yes High

MEM52-CPPDetect	and	handle	memory	allocation
errors

Yes High

MEM53-CPPExplicitly	construct	and	destruct	objects
when	manually	managing	object	lifetime

No High

MEM57-CPPAvoid	using	default	operator	new	for	over-
aligned	types

Yes Medium

MSC50-CPP Do	not	use	the	rand()	function	for
generating	pseudorandom	numbers

Yes Medium

MSC51-CPP Ensure	your	random	number	generator	is
properly	seeded

Yes Medium

MSC52-CPP Value-returning	functions	must	return	a
value	from	all	exit	paths

Yes Medium

MSC53-CPP Do	not	return	from	a	function	declared
[[noreturn]]

Yes Medium

MSC54-CPPA	signal	handler	must	be	a	plain	old
function

Yes High

OOP50-CPP Do	not	invoke	virtual	functions	from
constructors	or	destructors

Yes Low

OOP51-CPP Do	not	slice	derived	objects Yes Low
OOP52-CPP Do	not	delete	a	polymorphic	object	without

a	virtual	destructor
Yes Low

OOP53-CPP Write	constructor	member	initializers	in	the
canonical	order

Yes Medium

OOP54-CPP Gracefully	handle	self-copy	assignment Yes Low
OOP55-CPP Do	not	use	pointer-to-member	operators

to	access	nonexistent	members
No High

OOP56-CPP Honor	replacement	handler	requirements Yes
OOP57-CPP Prefer	special	member	functions	and

overloaded	operators	to	C	Standard	Library
functions

Yes High

OOP58-CPP Copy	operations	must	not	mutate	the
source	object

Yes Low

SEI	CERT	C++
Checks

www.scitools.com Page	4/5



STR50-CPP Guarantee	that	storage	for	strings	has
sufficient	space	for	character	data	and	the
null	terminator

Yes High

STR51-CPP Do	not	attempt	to	create	a	std::string	from
a	null	pointer

Yes High

STR52-CPP Use	valid	references,	pointers,	and
iterators	to	reference	elements	of	a
basic_string

Yes High

STR53-CPP Range	check	element	access Yes High

SEI	CERT	C++
Checks

www.scitools.com Page	5/5


