
The	CERT	Oracle	Secure	Coding	Standard	for	Java	provides	rules	for	secure
coding	in	the	Java	programming	language.

This	coding	standard	affects	the	wide	range	of	software	systems	developed	in	the
Java	programming	language.	

The	rules	and	recommendations	in	this	standard	are	a	work	in	progress	and
reflect	the	current	thinking	of	the	secure	coding	community.	As	rules	and
recommendations	mature,	they	are	published	in	report	or	book	form	as	official
releases.	These	releases	are	issued	as	dictated	by	the	needs	and	interests	of	the
secure	software	development	community.	

The	list	of	rules	and	recommendations	in	this	tool	were	last	updated	on
2023/05/23.

Checks	by	Severity

Checks

Check	ID Check	Name SupportedSeverity
DCL00-J Prevent	class	initialization	cycles Yes Low
DCL01-J Do	not	reuse	public	identifiers	from	the	Java

Standard	Library
No Low

DCL02-J Do	not	modify	the	collection's	elements
during	an	enhanced	for	statement

Yes Low

ENV00-J Do	not	sign	code	that	performs	only
unprivileged	operations

No High

ENV01-J Place	all	security-sensitive	code	in	a	single
JAR	and	sign	and	seal	it

No High

ENV02-J Do	not	trust	the	values	of	environment
variables

Yes Low

ENV03-J Do	not	grant	dangerous	combinations	of Yes High

SEI	CERT	Java
Checks

www.scitools.com Page	1/8



Do	not	grant	dangerous	combinations	of

permissions
ENV04-J Do	not	disable	bytecode	verification No High
ENV05-J Do	not	deploy	an	application	that	can	be

remotely	monitored
No High

ENV06-J Production	code	must	not	contain	debugging
entry	points

Yes High

ERR00-J Do	not	suppress	or	ignore	checked
exceptions

Yes Low

ERR01-J Do	not	allow	exceptions	to	expose	sensitive
information

Yes Medium

ERR02-J Prevent	exceptions	while	logging	data Yes Medium
ERR03-J Restore	prior	object	state	on	method	failure Yes Low
ERR04-J Do	not	complete	abruptly	from	a	finally	block Yes Low
ERR05-J Do	not	let	checked	exceptions	escape	from	a

finally	block
Yes Low

ERR06-J Do	not	throw	undeclared	checked	exceptions Yes Low
ERR07-J Do	not	throw	RuntimeException,	Exception,	or

Throwable
Yes Low

ERR08-J Do	not	catch	NullPointerException	or	any	of
its	ancestors

Yes Medium

ERR09-J Do	not	allow	untrusted	code	to	terminate	the
JVM

Yes Low

EXP00-J Do	not	ignore	values	returned	by	methods. Yes Medium
EXP01-J Do	not	use	a	null	in	a	case	where	an	object	is

required
No Low

EXP02-J Do	not	use	the	Object.equals()	method	to
compare	two	arrays.

Yes Low

EXP03-J Do	not	use	the	equality	operators	when
comparing	values	of	boxed	primitives

Yes Low

EXP04-J Do	not	pass	arguments	to	certain	Java
Collections	Framework	methods	that	are	a
different	type	than	the	collection	parameter
type

Yes Low

EXP05-J Do	not	follow	a	write	by	a	subsequent	write	or
read	of	the	same	object	within	an	expression

Yes Low

EXP06-J Expressions	used	in	assertions	must	not
produce	side	effects

Yes Low

FIO00-J Do	not	operate	on	files	in	shared	directories Yes Medium
FIO01-J Create	files	with	appropriate	access

permissions
Yes Medium

FIO02-J Detect	and	handle	file-related	errors Yes Medium

SEI	CERT	Java
Checks

www.scitools.com Page	2/8



FIO03-J Remove	temporary	files	before	termination Yes Medium
FIO04-J Release	resources	when	they	are	no	longer

needed
Yes Low

FIO05-J Do	not	expose	buffers	or	their	backing	arrays
methods	to	untrusted	code

Yes Medium

FIO06-J Do	not	create	multiple	buffered	wrappers	on	a
single	byte	or	character	stream

No Low

FIO07-J Do	not	let	external	processes	block	on	IO
buffers

No Low

FIO08-J Distinguish	between	characters	or	bytes	read
from	a	stream	and	-1

No High

FIO09-J Do	not	rely	on	the	write()	method	to	output
integers	outside	the	range	0	to	255

Yes Low

FIO10-J Ensure	the	array	is	filled	when	using	read()	to
fill	an	array

Yes Low

FIO12-J Provide	methods	to	read	and	write	little-
endian	data

No Low

FIO13-J Do	not	log	sensitive	information	outside	a
trust	boundary

Yes Medium

FIO14-J Perform	proper	cleanup	at	program
termination

Yes Medium

FIO15-J Do	not	reset	a	servlet's	output	stream	after
committing	it

No Low

FIO16-J Canonicalize	path	names	before	validating
them

No Medium

IDS00-J Prevent	SQL	Injection Yes High
IDS01-J Normalize	strings	before	validating	them Yes High
IDS03-J Do	not	log	unsanitized	user	input No Medium
IDS04-J Safely	extract	files	from	ZipInputStream Yes Low
IDS06-J Exclude	unsanitized	user	input	from	format

strings
Yes Medium

IDS07-J Sanitize	untrusted	data	passed	to	the
Runtime.exec()	method

No High

IDS08-J Sanitize	untrusted	data	included	in	a	regular
expression

Yes Medium

IDS11-J Perform	any	string	modifications	before
validation

Yes High

IDS14-J Do	not	trust	the	contents	of	hidden	form
fields

No High

IDS16-J Prevent	XML	Injection Yes High
IDS17-J Prevent	XML	External	Entity	Attacks No Medium

SEI	CERT	Java
Checks

www.scitools.com Page	3/8



JNI00-J Define	wrappers	around	native	methods Yes Medium
LCK00-J Use	private	final	lock	objects	to	synchronize

classes	that	may	interact	with	untrusted	code
Yes Low

LCK01-J Do	not	synchronize	on	objects	that	may	be
reused

Yes Medium

LCK02-J Do	not	synchronize	on	the	class	object
returned	by	getClass()

Yes Medium

LCK03-J Do	not	synchronize	on	the	intrinsic	locks	of
high-level	concurrency	objects

No Medium

LCK04-J Do	not	synchronize	on	a	collection	view	if	the
backing	collection	is	accessible

Yes Low

LCK05-J Synchronize	access	to	static	fields	that	can
be	modified	by	untrusted	code

Yes Low

LCK06-J Do	not	use	an	instance	lock	to	protect	shared
static	data

Yes Medium

LCK07-J Avoid	deadlock	by	requesting	and	releasing
locks	in	the	same	order

Yes Low

LCK08-J Ensure	actively	held	locks	are	released	on
exceptional	conditions

Yes Low

LCK09-J Do	not	perform	operations	that	can	block
while	holding	a	lock

Yes Low

LCK10-J Use	a	correct	form	of	the	double-checked
locking	idiom

Yes Low

LCK11-J Avoid	client-side	locking	when	using	classes
that	do	not	commit	to	their	locking	strategy

Yes Low

MET00-J Validate	method	arguments Yes High
MET01-J Never	use	assertions	to	validate	method

arguments
Yes Medium

MET02-J Do	not	use	deprecated	or	obsolete	classes	or
methods

Yes Low

MET03-J Methods	that	perform	a	security	check	must
be	declared	private	or	final.

Yes Medium

MET04-J Do	not	increase	the	accessibility	of
overridden	or	hidden	methods

Yes Medium

MET05-J Ensure	that	constructors	do	not	call
overridable	methods

Yes Medium

MET06-J Do	not	invoke	overridable	methods	in	clone() Yes Medium
MET07-J Never	declare	a	class	method	that	hides	a

method	declared	in	a	superclass	or
superinterface

Yes Low

MET08-J Preserve	the	equality	contract	when Yes Low

SEI	CERT	Java
Checks

www.scitools.com Page	4/8



Preserve	the	equality	contract	when

overriding	the	equals()	method
MET09-J Classes	that	define	an	equals()	method	must

also	define	a	hashCode()	method
Yes Low

MET10-J Follow	the	general	contract	when
implementing	the	compareTo()	method

Yes Medium

MET11-J Ensure	that	keys	used	in	comparison
operations	are	immutable

Yes Low

MET12-J Do	not	use	finalizers Yes Medium
MET13-J Do	not	assume	that	reassigning	method

arguments	modifies	the	calling	environment
No Medium

MSC00-J Use	SSLSocket	rather	than	Socket	for	secure
data	exchange

Yes Medium

MSC01-J Do	not	use	an	empty	infinite	loop Yes Low
MSC02-J Generate	strong	random	numbers Yes High
MSC03-J Never	hard	code	sensitive	information No High
MSC04-J Do	not	leak	memory No Low
MSC05-J Do	not	exhaust	heap	space No Low
MSC06-J Do	not	modify	the	underlying	collection	when

an	iteration	is	in	progress
No Low

MSC07-J Prevent	multiple	instantiations	of	singleton
objects

No Low

NUM00-JDetect	or	prevent	integer	overflow Yes Medium
NUM01-J Do	not	perform	bitwise	and	arithmetic

operations	on	the	same	data
No Medium

NUM02-J Ensure	that	division	and	remainder	operations
do	not	result	in	divide-by-zero	errors

Yes Low

NUM03-JUse	integer	types	that	can	fully	represent	the
possible	range	of	unsigned	data

No Low

NUM04-JDo	not	use	floating-point	numbers	if	precise
computation	is	required

No Low

NUM07-J Do	not	attempt	comparisons	with	NaN Yes Low
NUM08-JCheck	floating-point	inputs	for	exceptional

values
No Low

NUM09-JDo	not	use	floating-point	variables	as	loop
counters

Yes Low

NUM10-J Do	not	construct	BigDecimal	objects	from
floating-point	literals

Yes Low

NUM11-J Do	not	compare	or	inspect	the	string
representation	of	floating-point	values

Yes Low

NUM12-J Ensure	conversions	of	numeric	types	to
narrower	types	do	not	result	in	lost	or

Yes Low

SEI	CERT	Java
Checks

www.scitools.com Page	5/8



narrower	types	do	not	result	in	lost	or

misinterpreted	data
NUM13-J Avoid	loss	of	precision	when	converting

primitive	integers	to	floating-point
Yes Low

NUM14-J Use	shift	operators	correctly No Low
OBJ01-J Limit	accessibility	of	fields Yes Medium
OBJ02-J Preserve	dependencies	in	subclasses	when

changing	superclasses
No Medium

OBJ03-J Prevent	heap	pollution No Low
OBJ04-J Provide	mutable	classes	with	copy

functionality	to	safely	allow	passing	instances
to	untrusted	code

Yes Low

OBJ05-J Do	not	return	references	to	private	mutable
class	members

Yes High

OBJ06-J Defensively	copy	mutable	inputs	and	mutable
internal	components	

No Medium

OBJ07-J Sensitive	classes	must	not	let	themselves	be
copied

Yes Medium

OBJ08-J Do	not	expose	private	members	of	an	outer
class	from	within	a	nested	class

Yes Medium

OBJ09-J Compare	classes	and	not	class	names Yes High
OBJ10-J Do	not	use	public	static	nonfinal	fields Yes Medium
OBJ11-J Be	wary	of	letting	constructors	throw

exceptions
Yes High

OBJ13-J Ensure	that	references	to	mutable	objects	are
not	exposed

Yes Medium

SEC00-J Do	not	allow	privileged	blocks	to	leak
sensitive	information	across	a	trust	boundary

No Medium

SEC01-J Do	not	allow	tainted	variables	in	privileged
blocks

Yes High

SEC02-J Do	not	base	security	checks	on	untrusted
sources

No High

SEC03-J Do	not	load	trusted	classes	after	allowing
untrusted	code	to	load	arbitrary	classes

No High

SEC04-J Protect	sensitive	operations	with	security
manager	checks

No High

SEC05-J Do	not	use	reflection	to	increase	accessibility
of	classes,	methods,	or	fields

No High

SEC06-J Do	not	rely	on	the	default	automatic	signature
verification	provided	by	URLClassLoader	and
java.util.jar

No High

SEC07-J Call	the	superclass's	getPermissions() Yes High

SEI	CERT	Java
Checks

www.scitools.com Page	6/8



Call	the	superclass's	getPermissions()

method	when	writing	a	custom	class	loader
SER00-J Enable	serialization	compatibility	during	class

evolution
No Low

SER01-J Do	not	deviate	from	the	proper	signatures	of
serialization	methods

Yes High

SER02-J Sign	then	seal	objects	before	sending	them
outside	a	trust	boundary

No Medium

SER03-J Do	not	serialize	unencrypted	sensitive	data No Medium
SER04-J Do	not	allow	serialization	and	deserialization

to	bypass	the	security	manager
Yes High

SER05-J Do	not	serialize	instances	of	inner	classes Yes Medium
SER06-J Make	defensive	copies	of	private	mutable

components	during	deserialization
Yes Low

SER07-J Do	not	use	the	default	serialized	form	for
classes	with	implementation-defined
invariants

Yes Medium

SER08-J Minimize	privileges	before	deserializing	from	a
privileged	context

No High

SER09-J Do	not	invoke	overridable	methods	from	the
readObject()	method

Yes Low

SER10-J Avoid	memory	and	resource	leaks	during
serialization

No Low

SER11-J Prevent	overwriting	of	externalizable	objects No Low
SER12-J Prevent	deserialization	of	untrusted	data Yes High
STR00-J Don't	form	strings	containing	partial

characters	from	variable-width	encodings
No Low

STR01-J Do	not	assume	that	a	Java	char	fully
represents	a	Unicode	code	point

Yes Low

STR02-J Specify	an	appropriate	locale	when	comparing
locale-dependent	data

No Medium

STR03-J Do	not	encode	noncharacter	data	as	a	string Yes Low
STR04-J Use	compatible	character	encodings	when

communicating	string	data	between	JVMs
No Low

THI00-J Do	not	invoke	Thread.run() Yes Low
THI01-J Do	not	invoke	ThreadGroup	methods Yes Low
THI02-J Notify	all	waiting	threads	rather	than	a	single

thread.
Yes Low

THI03-J Always	invoke	wait()	and	await()	methods
inside	a	loop

Yes Low

THI04-J Ensure	that	threads	performing	blocking
operations	can	be	terminated

Yes Low

SEI	CERT	Java
Checks

www.scitools.com Page	7/8



THI05-J Do	not	use	Thread.stop()	to	terminate
threads.

Yes Low

TPS00-J Use	thread	pools	to	enable	graceful
degradation	of	service	during	traffic	bursts

Yes Low

TPS01-J Do	not	execute	interdependent	tasks	in	a
bounded	thread	pool

Yes Low

TPS02-J Ensure	that	tasks	submitted	to	a	thread	pool
are	interruptible

Yes Low

TPS03-J Ensure	that	tasks	executing	in	a	thread	pool
do	not	fail	silently

Yes Low

TPS04-J Ensure	ThreadLocal	variables	are	reinitialized
when	using	thread	pools

Yes Medium

TSM00-J Do	not	override	thread-safe	methods	with
methods	that	are	not	thread-safe

Yes Low

TSM01-J Do	not	let	the	this	reference	escape	during
object	construction

Yes Medium

TSM02-J Do	not	use	background	threads	during	class
initialization

Yes Low

TSM03-J Do	not	publish	partially	initialized	objects Yes Medium
VNA00-J Ensure	visibility	when	accessing	shared

primitive	variables
Yes Medium

VNA01-J Ensure	visibility	of	shared	references	to
immutable	objects

Yes Low

VNA02-J Ensure	that	compound	operations	on	shared
variables	are	atomic

Yes Medium

VNA03-J Do	not	assume	that	a	group	of	calls	to
independently	atomic	methods	is	atomic

Yes Low

VNA04-J Ensure	that	calls	to	chained	methods	are
atomic

Yes Low

VNA05-J Ensure	atomicity	when	reading	and	writing
64-bit	values

Yes Low

SEI	CERT	Java
Checks

www.scitools.com Page	8/8


