
The	The	Motor	Industry	Software	Reliability	Association	(MISRA)	guidelines	for	C
published	in	2023

MISRA	Mission	Statement:	

We	provide	world-leading,	best	practice	guidelines	for	the	safe	and	secure
application	of	both	embedded	control	systems	and	standalone	software.

MISRA	is	a	collaboration	between	manufacturers,	component	suppliers	and
engineering	consultancies	which	seeks	to	promote	best	practice	in	developing
safety	and	security-related	electronic	systems	and	other	software-intensive
applications.	To	this	end,	MISRA	publishes	documents	that	provide	accessible
information	for	engineers	and	management,	and	holds	events	to	permit	the
exchange	of	experiences	between	practitioners

www.misra.org.uk

Copyright©	2023	The	MISRA	Consortium	Limited

All	RulesAdvisory	RulesMandatory	RulesRequired	Rules
Understand	%
Coverage

78% 75% 62% 80%

Understand
Coverage

140 30 8 102

Total	Rules 180 40 13 127

Checks

Check	ID Check	Name Supported Category
MISRA23_1.1 1.1	The	program	shall	contain	no

violations	of	the	standard	C	syntax
and	constraints,	and	shall	not
exceed	the	implementation's
translation	limits

Yes Required

MISRA23_1.2 1.2	Language	extensions	should
not	be	used

No Advisory

MISRA23_1.3 1.3	There	shall	be	no	occurrence
of	undefined	or	critical	unspecified
behaviour

No Required

MISRA23_2.1 2.1	A	project	shall	not	contain
unreachable	code

Yes Required

MISRA23_2.2 2.2	A	project	shall	not	contain
dead	code

No Required

MISRA	C	2023
Checks

www.scitools.com Page	1/15

MISRA23_2.3 2.3	A	project	should	not	contain
unused	type	declarations

Yes Advisory

MISRA23_2.4 2.4	A	project	should	not	contain
unused	tag	declarations

Yes Advisory

MISRA23_2.5 2.5	A	project	should	not	contain
unused	macro	declarations

Yes Advisory

MISRA23_2.6 2.6	A	function	should	not	contain
unused	label	declarations

Yes Required

MISRA23_2.7 2.7	A	function	should	not	contain
unused	parameters

Yes Advisory

MISRA23_3.1 3.1	The	character	sequences	/*
and	//	shall	not	be	used	within	a
comment

Yes Required

MISRA23_3.2 3.2	Line-splicing	shall	not	be	used
in	//	comments

Yes Required

MISRA23_4.1 4.1	Octal	and	Hexadecimal
Sequences

Yes Required

MISRA23_4.2 4.2	Trigraphs	should	not	be	used Yes Advisory
MISRA23_5.1 5.1	External	identifiers	shall	be

distinct
Yes Required

MISRA23_5.2 5.2	Identifiers	declared	in	the
same	scope	and	name	space	shall
be	distinct

Yes Required

MISRA23_5.3 5.3	An	identifier	declared	in	an
inner	scope	shall	not	hide	an
identifier	declared	in	an	outer
scope

Yes Required

MISRA23_5.4 5.4	Macro	identifiers	shall	be
distinct

Yes Required

MISRA23_5.5 5.5	Identifiers	shall	be	distinct
from	macro	names

Yes Required

MISRA23_5.6 5.6	A	typedef	name	shall	be	a
unique	identifier

Yes Required

MISRA23_5.7 5.7	A	tag	name	shall	be	a	unique
identifier

Yes Required

MISRA23_5.8 5.8	Identifiers	that	define	objects
or	functions	with	external	linkage
shall	be	unique

Yes Required

MISRA23_5.9 5.9	Identifiers	that	define	objects
or	functions	with	internal	linkage
should	be	unique

Yes Advisory

MISRA	C	2023
Checks

www.scitools.com Page	2/15

MISRA23_6.1 6.1	Bit-fields	shall	only	be
declared	with	an	appropriate	type

Yes Required

MISRA23_6.2 6.2	Single-bit	named	bit	fields
shall	not	be	of	a	signed	type

Yes Required

MISRA23_6.3 6.3	A	bit	field	shall	not	be	declared
as	a	member	of	a	union

Yes Required

MISRA23_7.1 7.1	Octal	constants	shall	not	be
used

Yes Required

MISRA23_7.2 7.2	A	"u"	or	"U"	suffix	shall	be
applied	to	all	integer	constants
that	are	represented	in	an
unsigned	type

Yes Required

MISRA23_7.3 7.3	The	lowercase	character	"l"
shall	not	be	used	in	a	literal	suffix

Yes Required

MISRA23_7.4 7.4	A	string	literal	shall	not	be
assigned	to	an	object	unless	the
object's	type	is	"pointer	to	const-
qualified	char"

No Required

MISRA23_8.1 8.1	Types	shall	be	explicitly
specified

Yes Required

MISRA23_8.2 8.2	Use	Named	Parameters	and
Prototype	Form

Yes Required

MISRA23_8.3 8.3	All	declarations	of	an	object	or
function	shall	use	the	same	names
and	type	qualifiers

Yes Required

MISRA23_8.4 8.4	A	compatible	declaration	shall
be	visible	when	an	object	or
function	with	external	linkage	is
defined

Yes Required

MISRA23_8.5 8.5	An	external	object	or	function
shall	be	declared	once	in	one	and
only	one	file

Yes Required

MISRA23_8.6 8.6	An	identifier	with	external
linkage	shall	have	exactly	one
external	definition

Yes Required

MISRA23_8.7 8.7	Functions	and	objects	should
not	be	defined	with	external
linkage	if	they	are	referenced	in
only	one	translation	unit

Yes Advisory

MISRA23_8.8 8.8	The	static	storage	class
specifier	shall	be	used	in	all

Yes Required

MISRA	C	2023
Checks

www.scitools.com Page	3/15

specifier	shall	be	used	in	all

declarations	of	objects	and
functions	that	have	internal
linkage

MISRA23_8.9 8.9	An	object	should	be	declared
at	block	scope	if	its	identifier	only
appears	in	a	single	function

Yes Advisory

MISRA23_8.10 8.10	Non-static	Inline	Functions Yes Required
MISRA23_8.11 8.11	When	an	array	with	external

linkage	is	declared,	its	size	should
be	explicitly	specified

Yes Advisory

MISRA23_8.12 8.12	Within	an	enumerator	list,	the
value	of	an	implicitly-specified
enumeration	constant	shall	be
unique

Yes Required

MISRA23_8.13 8.13	A	pointer	should	point	to	a
const-qualified	type	whenever
possible

No Advisory

MISRA23_8.14 8.14	The	restrict	type	qualifier
shall	not	be	used

Yes Required

MISRA23_8.15 8.15	All	declarations	of	an	object
with	an	explicit	alignment
specification	shall	specify	the
same	alignment

Yes Required

MISRA23_8.16 8.16	The	alignment	specification
of	zero	should	not	appear	in	an
object	declaration

Yes Advisory

MISRA23_8.17 8.17	At	most	one	explicit	alignment
specifier	should	appear	in	an
object	declaration

Yes Advisory

MISRA23_9.1 9.1	The	value	of	an	object	with
automatic	storage	duration	shall
not	be	read	before	it	has	been	set

Yes Mandatory

MISRA23_9.2 9.2	The	initializer	for	an	aggregate
or	union	shall	be	enclosed	in
braces

Yes Required

MISRA23_9.3 9.3	Arrays	shall	not	be	partially
initialized

Yes Required

MISRA23_9.4 9.4	An	element	of	an	object	shall
not	be	initialized	more	than	once

Yes Required

MISRA23_9.5 9.5	Where	designated	initializers
are	used	to	initialize	an	array

Yes Required

MISRA	C	2023
Checks

www.scitools.com Page	4/15

are	used	to	initialize	an	array

object	the	size	of	the	array	shall
be	specified	explicitly

MISRA23_9.7 9.7	Atomic	objects	shall	be
appropriately	initialized	before
being	accessed

Yes Mandatory

MISRA23_10.1 10.1	Operands	shall	not	be	of	an
inappropriate	essential	type

Yes Required

MISRA23_10.2 10.2	Expressions	of	essentially
character	type	shall	not	be	used
inappropriately	in	addition	and
subtraction	operations

No Required

MISRA23_10.3 10.3	The	value	of	an	expression
shall	not	be	assigned	to	an	object
with	a	narrower	essential	type	or
of	a	different	essential	type
category

No Required

MISRA23_10.4 10.4	Both	operands	of	an	operator
in	which	the	usual	arithmetic
conversions	are	performed	shall
have	the	same	essential	type
category

Yes Required

MISRA23_10.5 10.5	The	value	of	an	expression
should	not	be	cast	to	an
inappropriate	essential	type

Yes Advisory

MISRA23_10.6 10.6	The	value	of	a	composite
expression	shall	not	be	assigned
to	an	object	with	wider	essential
type

Yes Required

MISRA23_10.7 10.7	If	a	composite	expression	is
used	as	one	operand	of	an
operator	in	which	the	usual
arithmetic	conversions	are
performed	then	the	other	operand
shall	not	have	wider	essential	type

No Required

MISRA23_10.8 10.8	The	value	of	a	composite
expression	shall	not	be	cast	to	a
different	essential	type	category
or	a	wider	essential	type

Yes Required

MISRA23_11.1 11.1	Conversions	shall	not	be
performed	between	a	pointer	to	a
function	and	any	other	type

Yes Required

MISRA23_11.2 11.2	Conversions	shall	not	be Yes Required

MISRA	C	2023
Checks

www.scitools.com Page	5/15

11.2	Conversions	shall	not	be

performed	between	a	pointer	to	an
incomplete	type
and	any	other	type

MISRA23_11.3 11.3	A	cast	shall	not	be	performed
between	a	pointer	to	object	type
and	a	pointer	to	a	different	object
type

Yes Required

MISRA23_11.4 11.4	A	conversion	should	not	be
performed	between	a	pointer	to
object	and	an	integer	type

Yes Required

MISRA23_11.5 11.5	A	conversion	should	not	be
performed	from	pointer	to	void
into	pointer	to	object

Yes Advisory

MISRA23_11.6 11.6	A	cast	shall	not	be	performed
between	pointer	to	void	and	an
arithmetic	type

Yes Required

MISRA23_11.7 11.7	A	cast	shall	not	be	performed
between	pointer	to	object	and	a
non-integer	arithmetic	type

Yes Required

MISRA23_11.8 11.8	A	conversion	shall	not	remove
any	const,	volatile	or	_Atomic
qualification	from	the	type	pointed
to	by	a	pointer

Yes Required

MISRA23_11.9 11.9	The	macro	NULL	shall	be	the
only	permitted	form	of	integer	null
pointer	constant

Yes Required

MISRA23_12.1 12.1	The	precedence	of	operators
within	expressions	should	be
made	explicit

No Advisory

MISRA23_12.2 12.2	The	right	hand	operand	of	a
shift	operator	shall	lie	in	the	range
zero	to	one	less	than	the	width	in
bits	of	the	essential	type	of	the
left	hand	operand

Yes Required

MISRA23_12.3 12.3	The	comma	operator	shall	not
be	used.

Yes Advisory

MISRA23_12.4 12.4	Evaluation	of	constant
expressions	should	not	lead	to
unsigned	integer	wrap-around

No Advisory

MISRA23_13.1 13.1	Initializer	lists	shall	not
contain	persistent	side	effects

Yes Required

MISRA	C	2023
Checks

www.scitools.com Page	6/15

MISRA23_13.2 13.2	The	value	of	an	expression
and	its	persistent	side	effects	shall
be	the	same	under	all	permitted
evaluation	orders

No Required

MISRA23_13.3 13.3	A	full	expression	containing
an	increment	(++)	or	decrement
(--)	operator	should	have	no	other
potential	side	effects	other	than
that	caused	by	the	increment	or
decrement	operator

Yes Advisory

MISRA23_13.4 13.4	The	result	of	an	assignment
operator	should	not	be	used

Yes Advisory

MISRA23_13.5 13.5	The	right	hand	operand	of	a
logical	&&	or	||	operator	shall	not
contain	persistent	side	effects

Yes Required

MISRA23_13.6 13.6	The	operand	of	the	sizeof
operator	shall	not	contain	any
expression	which	has	potential
side	effects

Yes Mandatory

MISRA23_14.1 14.1	A	loop	counter	shall	not	have
essentially	floating	type

Yes Required

MISRA23_14.2 14.2	A	for	loop	shall	be	well-
formed

No Required

MISRA23_14.3 14.3	Controlling	expressions	shall
not	be	invariant

No Required

MISRA23_14.4 14.4	The	controlling	expression	of
an	if	statement	and	the	controlling
expression	of	an	iteration-
statement	shall	have	essentially
Boolean	type

Yes Required

MISRA23_15.1 15.1	The	goto	statement	should
not	be	used

Yes Advisory

MISRA23_15.2 15.2	The	goto	statement	shall
jump	to	a	label	declared	later	in
the	same	function

Yes Required

MISRA23_15.3 15.3	Any	label	referenced	by	a
goto	statement	shall	be	declared
in	the	same	block,	or	in	any	block
enclosing	the	goto	statement

Yes Required

MISRA23_15.4 15.4	There	should	be	no	more	than
one	break	or	goto	statement	used

Yes Advisory

MISRA	C	2023
Checks

www.scitools.com Page	7/15

one	break	or	goto	statement	used

to	terminate	any	iteration
statement

MISRA23_15.5 15.5	A	function	should	have	a
single	point	of	exit	at	the	end

Yes Advisory

MISRA23_15.6 15.6	The	body	of	an	iteration-
statement	or	a	selection-
statement	shall	be	a	compound-
statement	

Yes Required

MISRA23_15.7 15.7	All	if	...	else	if	constructs	shall
be	terminated	with	an	else
statement

Yes Required

MISRA23_16.1 Switch	Statement	not	Well-formed Yes Required
MISRA23_16.2 16.2	A	switch	label	shall	only	be

used	when	the	most	closely-
enclosing	compound	statement	is
the	body	of	a	switch	statement

Yes Required

MISRA23_16.3 16.3	An	unconditional	break
statement	shall	terminate	every
switch-clause

Yes Required

MISRA23_16.4 16.4	Every	switch	statement	shall
have	a	default	label

Yes Required

MISRA23_16.5 16.5	A	default	label	shall	appear	as
either	the	first	or	the	last	switch
label	of	a	switch	statement

Yes Required

MISRA23_16.6 16.6	Every	switch	statement	shall
have	at	least	two	switch-clauses

Yes Required

MISRA23_16.7 16.7	A	switch-expression	shall	not
have	essentially	Boolean	type

No Required

MISRA23_17.1 17.1	The	standard	header	file
<stdarg.h>	shall	not	be	used

Yes Required

MISRA23_17.2 17.2	Functions	shall	not	call
themselves,	either	directly	or
indirectly

Yes Required

MISRA23_17.3 17.3	A	function	shall	not	be
declared	implicitly

Yes Mandatory

MISRA23_17.4 17.4	All	exit	paths	from	a	function
with	non-void	return	type	shall
have	an	explicit	return	statement
with	an	expression

Yes Required

MISRA23_17.5 17.5	The	function	argument
corresponding	to	a	parameter

No Advisory

MISRA	C	2023
Checks

www.scitools.com Page	8/15

corresponding	to	a	parameter

declared	to	have	an	array	type
shall	have	an	appropriate	number
of	elements

MISRA23_17.6 17.6	The	declaration	of	an	array
parameter	shall	not	contain	the
static	keyword	between	the	[]

Yes Mandatory

MISRA23_17.7 The	value	returned	by	a	function
having	non-void	return	type	shall
be	used

Yes Required

MISRA23_17.8 17.8	A	function	parameter	should
not	be	modified

Yes Advisory

MISRA23_17.10 17.10	A	function	declared	with	a
_Noreturn	function	specifier	shall
have	void	return	type

Yes Required

MISRA23_17.12 17.12	A	function	identifier	should
only	be	used	with	either	a
preceding	&,	or	with	a
parenthesized	parameter	list

Yes Required

MISRA23_17.13 17.13	A	function	type	shall	not	be
type	qualified

Yes Required

MISRA23_18.1 18.1	A	pointer	resulting	from
arithmetic	on	a	pointer	operand
shall	address	an	element	of	the
same	array	as	that	pointer
operand

No Required

MISRA23_18.2 18.2	Subtraction	between	pointers
shall	only	be	applied	to	pointers
that	address	elements	of	the	same
array

Yes Required

MISRA23_18.3 18.3	The	relational	operators	>,	>=,
<	and	<=	shall	not	be	applied	to
objects	of	pointer	type	except
where	they	point	into	the	same
object

Yes Required

MISRA23_18.4 18.4	The	+,	-,	+=	and	-=	operators
should	not	be	applied	to	an
expression	of	pointer	type

No Advisory

MISRA23_18.5 18.5	Declarations	should	contain
no	more	than	two	levels	of	pointer
nesting

No Advisory

MISRA23_18.6 18.6	The	address	of	an	object	with Yes Required

MISRA	C	2023
Checks

www.scitools.com Page	9/15

18.6	The	address	of	an	object	with

automatic	or	thread-local	storage
shall	not	be	copied	to	another
object	that	persists	after	the	first
object	has	ceased	to	exist

MISRA23_18.7 18.7	Flexible	array	members	shall
not	be	declared

Yes Required

MISRA23_18.8 18.8	Variable-length	array	types
shall	not	be	used

No Required

MISRA23_19.0.3 19.0.3	#include	directives	should
only	be	preceded	by	preprocessor
directives	or	comments

Yes Advisory

MISRA23_19.1 19.1	An	object	shall	not	be
assigned	or	copied	to	an
overlapping	object

No Mandatory

MISRA23_19.2 19.2	The	union	keyword	should	not
be	used

Yes Advisory

MISRA23_20.1 20.1	#include	directives	should
only	be	preceded	by	preprocessor
directives	or	comments

Yes Advisory

MISRA23_20.2 20.2	The	',	"	or	backslash
characters	and	the	/*	or	//
character	sequences	shall	not
occur	in	a	header	file	name

Yes Required

MISRA23_20.3 20.3	The	#include	directive	shall
be	followed	by	either	a	<filename>
or	"filename"	sequence

Yes Required

MISRA23_20.4 20.4	A	macro	shall	not	be	defined
with	the	same	name	as	a	keyword

Yes Required

MISRA23_20.5 20.5	#undef	should	not	be	used Yes Advisory
MISRA23_20.6 20.6	Tokens	that	look	like	a

preprocessing	directive	shall	not
occur	within	a	macro	argument

Yes Required

MISRA23_20.7 20.7	Expressions	resulting	from
the	expansion	of	macro
parameters	shall	be	enclosed	in
parentheses

No Required

MISRA23_20.8 20.8	The	controlling	expression	of
a	#if	or	#elif	preprocessing
directive	shall	evaluate	to	0	or	1

No Required

MISRA23_20.9 20.9	All	identifiers	used	in	the
controlling	expression	of	#if	or

No Required

MISRA	C	2023
Checks

www.scitools.com Page	10/15

controlling	expression	of	#if	or

#elif	preprocessing	directives	shall
be	#define'd	before	evaluation

MISRA23_20.10 20.10	The	#	and	##	operators
should	not	be	used

Yes Advisory

MISRA23_20.11 20.11	A	macro	parameter
immediately	following	a	#	operator
shall	not	immediately	be	followed
by	a	##	operator

Yes Required

MISRA23_20.12 20.12	A	macro	parameter	used	as
an	operand	to	the	#	or	##
operators,	which	is	itself	subject	to
further	macro	replacement,	shall
only	be	used	as	an	operand	to
these	operators

No Required

MISRA23_20.13 20.13	A	line	whose	first	token	is	#
shall	be	a	valid	preprocessing
directive

Yes Required

MISRA23_20.14 20.14	All	#else,	#elif	and	#endif
preprocessor	directives	shall
reside	in	the	same	file	as	the	#if,
#ifdef	or	#ifndef	directive	to	which
they	are	related

Yes Required

MISRA23_21.1 21.1	#define	and	#undef	shall	not
be	used	on	a	reserved	identifier	or
reserved	macro	name

Yes Required

MISRA23_21.2 21.2	Reserved	Identifiers	or
Macros

Yes Required

MISRA23_21.3 21.3	The	memory	allocation	and
deallocation	functions	of
<stdlib.h>	shall	not	be	used

Yes Required

MISRA23_21.4 21.4	The	standard	header	file
<setjmp.h>	shall	not	be	used

Yes Required

MISRA23_21.5 21.5	The	standard	header	file
<signal.h>	shall	not	be	used

Yes Required

MISRA23_21.6 21.6	The	Standard	Library	input/
output	functions	shall	not	be	used

Yes Required

MISRA23_21.7 21.7	The	Standard	Library
functions	atof,	atoi,	atol	and	atoll
of	<stdlib.h>	shall	not	be	used

Yes Required

MISRA23_21.8 21.8	The	Standard	Library
termination	functions	of	<stdlib.h>

Yes Required

MISRA	C	2023
Checks

www.scitools.com Page	11/15

termination	functions	of	<stdlib.h>

shall	not	be	used
MISRA23_21.9 21.9	The	library	functions	bsearch

and	qsort	of	<stdlib.h>	shall	not
be	used

Yes Required

MISRA23_21.10 21.10	The	Standard	Library	time
and	date	functions	shall	not	be
used

Yes Required

MISRA23_21.11 21.11	The	standard	header	file
<tgmath.h>	shall	not	be	used

Yes Advisory

MISRA23_21.12 21.12	The	standard	header	file
<fenv.h>	shall	not	be	used

Yes Required

MISRA23_21.17 21.17	Use	of	the	string	handling
functions	from	<string.h>	shall	not
result	in	accesses	beyond	the
bounds	of	the	objects	referenced
by	their	pointer	parameters

Yes Mandatory

MISRA23_21.19 21.19	The	pointers	returned	by	the
Standard	Library	functions
localeconv,	getenv,	setlocale	or,
strerror	shall	only	be	used	as	if
they	have	pointer	to	const-
qualified	type

Yes Mandatory

MISRA23_21.20 21.20	The	pointer	returned	by	the
C++	Standard	Library	functions
asctime,	ctime,	gmtime,	localtime,
localeconv,	getenv,	setlocale	or
strerror	must	not	be	used
following	a	subsequent	call	to	the
same	function

Yes Mandatory

MISRA23_21.21 21.21	The	Standard	Library
function	system	of	<stdlib.h>	shall
not	be	used

Yes Required

MISRA23_21.24 21.24	The	random	number
generator	functions	of	<stdlib.h>
shall	not	be	used

Yes Required

MISRA23_21.26 21.26	The	Standard	Library
function	mtx_timedlock()	shall
only	be	invoked	on	mutex	objects
of	appropriate	mutex	type

Yes Required

MISRA23_22.1 22.1	All	resources	obtained
dynamically	by	means	of	Standard
Library	functions	shall	be	explicitly

No Required

MISRA	C	2023
Checks

www.scitools.com Page	12/15

Library	functions	shall	be	explicitly

released
MISRA23_22.2 22.2	A	block	of	memory	shall	only

be	freed	if	it	was	allocated	by
means	of	a	Standard	Library
function

No Mandatory

MISRA23_22.3 22.3	The	same	file	shall	not	be
open	for	read	and	write	access	at
the	same	time	on	different	streams

No Required

MISRA23_22.4 22.4	There	shall	be	no	attempt	to
write	to	a	stream	which	has	been
opened	as	read-only

No Mandatory

MISRA23_22.5 22.5	A	pointer	to	a	FILE	object
shall	not	be	dereferenced

No Mandatory

MISRA23_22.6 22.6	The	value	of	a	pointer	to	a
FILE	shall	not	be	used	after	the
associated	stream	has	been
closed

No Mandatory

MISRA23_22.11 22.11	A	thread	that	was	previously
either	joined	or	detached	shall	not
be	subsequently	joined	nor
detached

Yes Required

MISRA23_22.13 22.13	Thread	objects,	thread
synchronization	objects	and
thread-specific	storage	pointers
shall	have	appropriate	storage
duration

Yes Required

MISRA23_22.17 22.17	No	thread	shall	unlock	a
mutex	or	call	cnd_wait()	or
cnd_timedwait()	for	a	mutex	it	has
not	locked	before

Yes Required

MISRA23_DIR_1.1 Directive	1.1	Any	implementation-
defined	behaviour	on	which	the
output	of	the	program	depends
shall	be	documented	and
understood

No Required

MISRA23_DIR_2.1 Directive	2.1	All	source	files	shall
compile	without	any	compilation
errors

Yes Required

MISRA23_DIR_3.1 Directive	3.1	All	code	shall	be
traceable	to	documented
requirements

No Required

MISRA	C	2023
Checks

www.scitools.com Page	13/15

MISRA23_DIR_4.1 Directive	4.1	Run-time	failures
shall	be	minimized

No Required

MISRA23_DIR_4.2 Directive	4.2	All	usage	of
assembly	language	should	be
documented

No Advisory

MISRA23_DIR_4.3 Directive	4.3	Assembly	language
shall	be	encapsulated	and
isolated.

Yes Required

MISRA23_DIR_4.4 Directive	4.4	Sections	of	code
should	not	be	"commented	out"

Yes Advisory

MISRA23_DIR_4.5 Directive	4.5	Identifiers	in	the
same	name	space	with
overlapping	visibility	should	be
typographically	unambiguous

Yes Advisory

MISRA23_DIR_4.6 Directive	4.6	Typedefs	that
indicate	size	and	signedness
should	be	used	in	place	of	the
basic	numerical	types

Yes Advisory

MISRA23_DIR_4.7 Directive	4.7	If	a	function	returns
error	information,	then	that	error
information	shall	be	tested

No Required

MISRA23_DIR_4.8 Directive	4.8	If	a	pointer	to	a
structure	or	union	is	never
dereferenced	within	a	translation
unit,	then	the	implementation	of
the	object	should	be	hidden

Yes Advisory

MISRA23_DIR_4.9 Directive	4.9	A	function	should	be
used	in	preference	to	a	function-
like	macro	where	they	are
interchangeable

No Advisory

MISRA23_DIR_4.10Directive	4.10	Precautions	shall	be
taken	in	order	to	prevent	the
contents	of	a	header	file	being
included	more	than	once

Yes Required

MISRA23_DIR_4.11 Directive	4.11	The	validity	of
values	passed	to	library	functions
shall	be	checked

No Required

MISRA23_DIR_4.12Directive	4.12	Dynamic	memory
allocation	shall	not	be	used

Yes Required

MISRA23_DIR_4.13Directive	4.13	Functions	which	are
designed	to	provide	operations	on

No Advisory

MISRA	C	2023
Checks

www.scitools.com Page	14/15

designed	to	provide	operations	on

a	resource	should	be	called	in	an
appropriate	sequence

MISRA23_DIR_5.1 Directive	5.1	There	shall	be	no
data	races	between	threads

No Required

MISRA23_DIR_5.2 Directive	5.2	There	shall	be	no
deadlocks	between	threads

No Required

MISRA23_DIR_5.3 Directive	5.3	There	shall	be	no
dynamic	thread	creation

Yes Required

MISRA	C	2023
Checks

www.scitools.com Page	15/15

