
The	The	Motor	Industry	Software	Reliability	Association	(MISRA)	guidelines	for	C+
+	published	in	2023

MISRA	Mission	Statement:	

We	provide	world-leading,	best	practice	guidelines	for	the	safe	and	secure
application	of	both	embedded	control	systems	and	standalone	software.

MISRA	is	a	collaboration	between	manufacturers,	component	suppliers	and
engineering	consultancies	which	seeks	to	promote	best	practice	in	developing
safety	and	security-related	electronic	systems	and	other	software-intensive
applications.	To	this	end,	MISRA	publishes	documents	that	provide	accessible
information	for	engineers	and	management,	and	holds	events	to	permit	the
exchange	of	experiences	between	practitioners

www.misra.org.uk

Copyright©	2023	The	MISRA	Consortium	Limited

All	RulesAdvisory	RulesMandatory	RulesRequired	Rules
Understand	%
Coverage

94% 95% 100% 94%

Understand
Coverage

127 35 3 89

Total	Rules 135 37 3 95

Checks

Check	ID Check	Name Supported Category
MISRA23_0.0.1 0.0.1	A	function	shall	not	contain

unreachable	statements
Yes Required

MISRA23_0.0.2 0.0.2	Controlling	expressions	should
not	be	invariant

No Required

MISRA23_0.1.2 0.1.2	The	value	returned	by	a
function	shall	be	used

Yes Required

MISRA23_0.2.1 0.2.1	Variables	with	limited	visibility
should	be	used	at	least	once

Yes Advisory

MISRA23_0.2.2 0.2.2	A	named	function	parameter
shall	be	used	at	least	once

Yes Required

MISRA23_0.2.3 0.2.3	Types	with	limited	visibility
should	be	used	at	least	once

Yes Advisory

MISRA23_0.2.4 0.2.4	Functions	with	limited	visibility
should	be	used	at	least	once

Yes Advisory

MISRA	C++	2023
Checks

www.scitools.com Page	1/10

MISRA23_4.1.1 4.1.1	A	program	shall	conform	to
ISO/IEC	14882=2017	(C++17)

No Required

MISRA23_4.1.2 4.1.2	Deprecated	features	should
not	be	used

No Advisory

MISRA23_4.1.3 4.1.3	There	shall	be	no	occurrence
of	undefined	or	critical	unspecified
behaviour

No Required

MISRA23_5.0.1 5.0.1	Trigraph-like	sequences
should	not	be	used

Yes Required

MISRA23_5.7.1 5.7.1	The	character	sequence	/*
shall	not	be	used	within	a	C-style
comment

Yes Required

MISRA23_5.7.2 5.7.2	Sections	of	code	should	not	be
"commented	out"

Yes Advisory

MISRA23_5.7.3 5.7.3	Line-splicing	shall	not	be	used
in	//	comments

Yes Required

MISRA23_5.13.1 5.13.1	Within	character	literals	and
non	raw-string	literals,	\	shall	only
be	used	to	form	a	defined	escape
sequence	or	universal	character
name

Yes Required

MISRA23_5.13.2 5.13.2	Octal	escape	sequences,
hexadecimal	escape	sequences	and
universal	character	names	shall	be
terminated

Yes Required

MISRA23_5.13.3 5.13.3	Octal	constants	shall	not	be
used

Yes Required

MISRA23_5.13.4 5.13.4	Unsigned	integer	literals	shall
be	appropriately	suffixed

Yes Required

MISRA23_5.13.5 5.13.5	The	lowercase	form	of	L	shall
not	be	used	as	the	first	character	in
a	literal	suffix

Yes Required

MISRA23_5.13.6 5.13.6	An	integer-literal	of	type	long
long	shall	not	use	a	single	L	or	l	in
any	suffix

Yes Required

MISRA23_5.13.7 5.13.7	String	literals	with	different
encoding	prefixes	shall	not	be
concatenated

Yes Required

MISRA23_6.0.1 6.0.1	Block	scope	declarations	shall
not	be	visually	ambiguous

Yes Required

MISRA23_6.0.2 6.0.2	When	an	array	with	external Yes Advisory

MISRA	C++	2023
Checks

www.scitools.com Page	2/10

6.0.2	When	an	array	with	external

linkage	is	declared,	its	size	should
be	explicitly	specified

MISRA23_6.0.3 6.0.3	Global	Namespace
Declarations

Yes Required

MISRA23_6.0.4 6.0.4	The	identifier	main	shall	not
be	used	for	a	function	other	than
the	global	function	main

Yes Required

MISRA23_6.2.4 6.2.4	A	header	file	shall	not	contain
definitions	of	functions	or	objects
that	are	non-inline	and	have	external
linkage

Yes Required

MISRA23_6.4.2 6.4.2	Derived	classes	shall	not
conceal	functions	that	are	inherited
from	their	bases

Yes Required

MISRA23_6.5.1 6.5.1	A	function	or	object	with
external	linkage	should	be
introduced	in	a	header	file

Yes Advisory

MISRA23_6.5.2 6.5.2	Internal	linkage	should	be
specified	appropriately

Yes Advisory

MISRA23_6.7.1 6.7.1	Local	variables	shall	not	have
static	storage	duration

Yes Required

MISRA23_6.7.2 6.7.2	Global	variables	shall	not	be
used

Yes Required

MISRA23_6.8.1 6.8.1	An	object	shall	not	be
accessed	outside	of	its	lifetime

No Required

MISRA23_6.8.2 6.8.2	A	function	must	not	return	a
reference	or	a	pointer	to	a	local
variable	with	automatic	storage
duration

Yes Mandatory

MISRA23_6.9.1 6.9.1	The	same	type	aliases	shall	be
used	in	all	declarations	of	the	same
entity

Yes Required

MISRA23_6.9.2 6.9.2	The	names	of	the	standard
signed	integer	types	and	standard
unsigned	integer	types	should	not
be	used

Yes Advisory

MISRA23_7.0.1 7.0.1	There	shall	be	no	conversion
from	type	bool

Yes Required

MISRA23_7.0.3 7.0.3	The	numerical	value	of	a
character	shall	not	be	used

Yes Required

MISRA23_7.11.1 7.11.1	nullptr	shall	be	the	only	form Yes Required

MISRA	C++	2023
Checks

www.scitools.com Page	3/10

7.11.1	nullptr	shall	be	the	only	form

of	the	null-pointer-constant
MISRA23_7.11.2 7.11.2	Array	to	Pointer	Decay Yes Required
MISRA23_8.1.1 8.1.1	A	non-transient	lambda	shall

not	implicitly	capture	this
Yes Required

MISRA23_8.1.2 8.1.2	Variables	should	be	captured
explicitly	in	a	non-transient	lambda

Yes Advisory

MISRA23_8.2.1 8.2.1	A	virtual	base	class	shall	only
be	cast	to	a	derived	class	by	means
of	dynamic_cast

Yes Required

MISRA23_8.2.3 8.2.3	A	cast	shall	not	remove	any
const	or	volatile	qualification	from
the	type	accessed	via	a	pointer	or
by	reference

Yes Required

MISRA23_8.2.5 8.2.5	reinterpret_cast	shall	not	be
used

Yes Required

MISRA23_8.2.6 8.2.6	An	object	with	integral,
enumerated,	or	pointer	to	void	type
shall	not	be	cast	to	a	pointer	type

Yes Required

MISRA23_8.2.7 8.2.7	Pointer	to	Integer	Cast Yes Advisory
MISRA23_8.2.8 8.2.8	An	object	pointer	type	shall

not	be	cast	to	an	integral	type	other
than	std::uintptr_t	or	std::intptr_t

Yes Required

MISRA23_8.2.9 8.2.9	The	operand	to	typeid	shall
not	be	an	expression	of	polymorphic
class	type

Yes Required

MISRA23_8.2.10 8.2.10	Functions	shall	not	call
themselves,	either	directly	or
indirectly

Yes Required

MISRA23_8.3.1 8.3.1	The	built-in	unary	-	operator
should	not	be	applied	to	an
expression	of	unsigned	type

Yes Advisory

MISRA23_8.3.2 8.3.2	The	built-in	unary	+	operator
should	not	be	used

Yes Advisory

MISRA23_8.7.2 8.7.2	Subtraction	between	pointers
shall	only	be	applied	to	pointers	that
address	elements	of	the	same	array

Yes Required

MISRA23_8.14.1 8.14.1	The	right-hand	operand	of	a
logical	&&	or	||	operator	should	not
contain	persistent	side	effects

Yes Advisory

MISRA23_8.18.2 8.18.2	The	result	of	an	assignment
operator	should	not	be	used

No Advisory

MISRA	C++	2023
Checks

www.scitools.com Page	4/10

MISRA23_8.19.1 8.19.1	The	comma	operator	shall	not
be	used.

Yes Advisory

MISRA23_9.3.1 9.3.1	The	body	of	an	iteration-
statement	or	a	selection-statement
shall	be	acompound-statement

Yes Required

MISRA23_9.4.1 9.4.1	All	if	...	else	if	constructs	shall
be	terminated	with	an	else
statement

Yes Required

MISRA23_9.5.2 9.5.2	A	for-range-initializer	shall
contain	at	most	one	function	call

Yes Required

MISRA23_9.6.1 9.6.1	The	goto	statement	should	not
be	used

Yes Advisory

MISRA23_9.6.2 9.6.2	A	goto	statement	shall
reference	a	label	in	a	surrounding
block

Yes Required

MISRA23_9.6.3 9.6.3	The	goto	statement	shall	jump
to	a	label	declared	later	in	the
function	body

Yes Required

MISRA23_9.6.4 9.6.4	A	function	declared	with	the
[[noreturn]]	attribute	shall	not	return

Yes Required

MISRA23_9.6.5 9.6.5	A	function	with	non-void
return	type	shall	return	a	value	on	all
paths

Yes Required

MISRA23_10.0.1 10.0.1	A	declaration	should	not
declare	more	than	one	variable	or
member	variable

Yes Advisory

MISRA23_10.1.1 10.1.1	The	target	type	of	a	pointer	or
lvalue	reference	parameter	should
be	const-qualified	appropriately

Yes Advisory

MISRA23_10.1.2 10.1.2	The	volatile	qualifier	shall	be
used	appropriately

Yes Required

MISRA23_10.2.1 10.2.1	An	enumeration	shall	be
defined	with	an	explicit	underlying
type

Yes Required

MISRA23_10.2.2 10.2.2	Unscoped	enumerations
should	not	be	declared

Yes Advisory

MISRA23_10.3.1 10.3.1	There	should	be	no	unnamed
namespaces	in	header	files

Yes Advisory

MISRA23_10.4.1 10.4.1	The	asm	declaration	shall	not
be	used

Yes Required

MISRA	C++	2023
Checks

www.scitools.com Page	5/10

MISRA23_11.3.1 11.3.1	Variables	of	array	type	should
not	be	declared

Yes Advisory

MISRA23_11.3.2 11.3.2	The	declaration	of	an	object
should	contain	no	more	than	two
levels	of	pointer	indirection

Yes Advisory

MISRA23_11.6.1 11.6.1	All	variables	should	be
initialized

Yes Advisory

MISRA23_11.6.3 11.6.3	Within	an	enumerator	list,	the
value	of	an	implicitly-specified
enumeration	constant	shall	be
unique

Yes Required

MISRA23_12.2.1 12.2.1	Bit-fields	should	not	be
declared

Yes Advisory

MISRA23_12.2.2 12.2.2	A	bit-field	shall	have	an
appropriate	type

Yes Required

MISRA23_12.2.3 12.2.3	A	named	bit-field	with	signed
integer	type	shall	not	have	a	length
of	one	bit

Yes Required

MISRA23_12.3.1 12.3.1	The	union	keyword	shall	not
be	used

Yes Required

MISRA23_13.1.1 13.1.1	Classes	should	not	be
inherited	virtually

Yes Advisory

MISRA23_13.1.2 13.1.2	An	accessible	base	class	shall
not	be	both	virtual	and	non-virtual
in	the	same	hierarchy

Yes Required

MISRA23_13.3.1 13.3.1	User-declared	member
functions	shall	use	the	virtual,
override	and	final	specifiers
appropriately

Yes Required

MISRA23_13.3.2 13.3.2	Parameters	in	an	overriding
virtual	function	shall	not	specify
different	default	arguments

Yes Required

MISRA23_13.3.3 13.3.3	The	parameters	in	all
declarations	or	overrides	of	a
function	shall	either	be	unnamed	or
have	identical	names

Yes Required

MISRA23_14.1.1 14.1.1	Non-static	data	members
should	be	either	all	private	or	all
public

Yes Advisory

MISRA23_15.0.2 15.0.2	User-provided	copy	and
move	member	functions	of	a	class

Yes Advisory

MISRA	C++	2023
Checks

www.scitools.com Page	6/10

move	member	functions	of	a	class

should	have	appropriate	signatures
MISRA23_15.1.1 15.1.1	An	object's	dynamic	type	shall

not	be	used	from	within	its
constructor	or	destructor

Yes Required

MISRA23_15.1.3 15.1.3	Conversion	operators	and
constructors	that	are	callable	with	a
single	argument	shall	be	explicit

Yes Required

MISRA23_15.1.5 15.1.5	A	class	shall	only	define	an
initializer-list	constructor	when	it	is
the	only	constructor

Yes Required

MISRA23_16.5.1 16.5.1	The	logical	AND	and	logical
OR	operators	shall	not	be
overloaded

Yes Required

MISRA23_16.5.2 16.5.2	The	address-of	operator	shall
not	be	overloaded

Yes Required

MISRA23_16.6.1 16.6.1	Symmetrical	operators	should
only	be	implemented	as	non-
member	functions

Yes Advisory

MISRA23_17.8.1 17.8.1	Function	templates	shall	not
be	explicitly	specialized

Yes Required

MISRA23_18.1.1 18.1.1	An	exception	object	shall	not
have	pointer	type

Yes Required

MISRA23_18.1.2 18.1.2	An	empty	throw	shall	only
occur	within	the	compound-
statement	of	a	catch	handler

Yes Required

MISRA23_18.3.1 18.3.1	There	should	be	at	least	one
exception	handler	to	catch	all
otherwise	unhandled	exceptions

Yes Advisory

MISRA23_18.3.2 18.3.2	An	exception	of	class	type
shall	be	caught	by	const	reference
or	reference

Yes Required

MISRA23_18.3.3 18.3.3	Handlers	for	a	function-try-
block	of	a	constructor	or	destructor
shall	not	refer	to	non-static
members	from	their	class	or	its
bases

Yes Required

MISRA23_18.5.2 18.5.2	Program-terminating
functions	should	not	be	used

Yes Advisory

MISRA23_19.0.1 19.0.1	A	line	whose	first	token	is	#
shall	be	a	valid	preprocessing
directive

Yes Required

MISRA	C++	2023
Checks

www.scitools.com Page	7/10

MISRA23_19.0.2 19.0.2	Function-like	macros	shall
not	be	defined

Yes Required

MISRA23_19.0.4 19.0.4	#undef	should	only	be	used
for	macros	defined	previously	in	the
same	file

Yes Advisory

MISRA23_19.1.1 19.1.1	The	defined	preprocessor
operator	shall	be	used	appropriately

Yes Required

MISRA23_19.1.2 19.1.2	All	#else,	#elif	and	#endif
preprocessor	directives	shall	reside
in	the	same	file	as	the	#if,	#ifdef	or
#ifndef	directive	to	which	they	are
related

Yes Required

MISRA23_19.1.3 19.1.3	All	identifiers	used	in	the
controlling	expression	of	#if	or	#elif
preprocessing	directives	shall	be
defined	prior	to	evaluation

No Required

MISRA23_19.2.1 19.2.1	Precautions	shall	be	taken	in
order	to	prevent	the	contents	of	a
header	file	being	included	more
than	once

Yes Required

MISRA23_19.2.2 19.2.2	The	#include	directive	shall
be	followed	by	either	a	<filename>
or	"filename"	sequence

Yes Required

MISRA23_19.2.3 19.2.3	The	'	or	"	or	\	characters	and
the	/*	or	//	character	sequences
shall	not	occur	in	a	header	file	name

Yes Required

MISRA23_19.3.1 19.3.1	The	#	and	##	operators
should	not	be	used

Yes Advisory

MISRA23_19.3.2 19.3.2	A	macro	parameter
immediately	following	a	#	operator
shall	not	immediately	be	followed	by
a	##	operator

Yes Required

MISRA23_19.3.3 19.3.3	The	argument	to	a	mixed-use
macro	parameter	shall	not	be
subject	to	further	expansion

No Required

MISRA23_19.3.4 19.3.4	Parentheses	shall	be	used	to
ensure	macro	arguments	are
expanded	appropriately

Yes Required

MISRA23_19.3.5 19.3.5	Tokens	that	look	like	a
preprocessing	directive	shall	not
occur	within	a	macro	argument

Yes Advisory

MISRA	C++	2023
Checks

www.scitools.com Page	8/10

MISRA23_19.6.1 19.6.1	The	#pragma	directive	and
the	_Pragma	operator	should	not	be
used

Yes Advisory

MISRA23_21.2.1 21.2.1	The	library	functions	atof,
atoi,	atol	and	atoll	from	library
<cstdlib>	shall	not	be	used

Yes Required

MISRA23_21.2.2 21.2.2	The	string	handling	functions
from	<cstring>,	<cstdlib>,	<cwchar>
and	<cinttypes>	shall	not	be	used

Yes Required

MISRA23_21.2.3 21.2.3	The	library	function	system
from	<cstdlib>	shall	not	be	used

Yes Required

MISRA23_21.2.4 21.2.4	The	macro	offsetof	shall	not
be	used

Yes Required

MISRA23_21.6.1 21.6.1	Dynamic	memory	should	not
be	used

Yes Advisory

MISRA23_21.6.2 21.6.2	Dynamic	memory	shall	be
managed	automatically

Yes Required

MISRA23_21.6.4 21.6.4	If	a	project	defines	either	a
sized	or	unsized	version	of	a	global
operator	delete,	then	both	shall	be
defined

Yes Required

MISRA23_21.6.5 21.6.5	A	pointer	to	an	incomplete
class	type	shall	not	be	deleted

Yes Required

MISRA23_21.10.1 21.10.1	The	features	of	<cstdarg>
shall	not	be	used

Yes Required

MISRA23_21.10.2 21.10.2	The	standard	header	file
<csetjmp>	shall	not	be	used

Yes Required

MISRA23_21.20.321.20.3	The	facilities	provided	by
the	standard	header	file	<csignal>
shall	not	be	used

Yes Required

MISRA23_22.3.1 22.3.1	The	assert	macro	shall	not	be
used	with	a	constant-expression

Yes Required

MISRA23_22.4.1 22.4.1	The	literal	value	zero	shall	be
the	only	value	assigned	to	errno

Yes Required

MISRA23_24.5.1 24.5.1	The	character	handling
functions	from	<cctype>	and
<cwctype>	shall	not	be	used

Yes Required

MISRA23_24.5.2 24.5.2	The	C++	Standard	Library
functions	memcpy,	memmove	and
memcmp	from	<cstring>	shall	not
be	used

Yes Required

MISRA	C++	2023
Checks

www.scitools.com Page	9/10

MISRA23_25.5.1 25.5.1	The	setlocale	and
std::locale::global	functions	shall
not	be	called

Yes Required

MISRA23_25.5.2 25.5.2	The	pointers	returned	by	the
C++	Standard	Library	functions
localeconv,	getenv,	setlocale	or
strerror	must	only	be	used	as	if	they
have	pointer	to	const-qualified	type

Yes Mandatory

MISRA23_25.5.3 25.5.3	The	pointer	returned	by	the
C++	Standard	Library	functions
asctime,	ctime,	gmtime,	localtime,
localeconv,	getenv,	setlocale	or
strerror	must	not	be	used	following
a	subsequent	call	to	the	same
function

Yes Mandatory

MISRA23_26.3.1 26.3.1	std::vector	should	not	be
specialized	with	bool

Yes Advisory

MISRA23_28.6.1 28.6.1	The	argument	to	std::move
shall	be	a	non-const	lvalue

Yes Required

MISRA23_30.0.1 30.0.1	The	C	Library	input/output
functions	shall	not	be	used

Yes Required

MISRA23_30.0.2 30.0.2	Reads	and	writes	on	the
same	file	stream	shall	be	separated
by	a	positioning	operation

Yes Required

MISRA	C++	2023
Checks

www.scitools.com Page	10/10

