
This	standard	provides	rules	for	secure	coding	in	the	C	programming	language.

The	rules	and	recommendations	in	this	standard	are	a	work	in	progress	and
reflect	the	current	thinking	of	the	secure	coding	community.	As	rules	and
recommendations	mature,	they	are	published	in	report	or	book	form	as	official
releases.	These	releases	are	issued	as	dictated	by	the	needs	and	interests	of	the
secure	software	development	community.	

The	list	of	rules	and	recommendations	in	this	tool	were	last	updated	on
2023/05/23.

Checks	by	Severity

Checks

Check	ID Check	Name SupportedSeverity
ARR30-C Do	not	form	or	use	out-of-bounds	pointers

or	array	subscripts
No High

ARR32-C Ensure	size	arguments	for	variable	length
arrays	are	in	a	valid	range

No High

ARR36-C Do	not	subtract	or	compare	two	pointers
that	do	not	refer	to	the	same	array

Yes Medium

ARR37-C Do	not	add	or	subtract	an	integer	to	a
pointer	to	a	non-array	object

Yes Medium

ARR38-C Guarantee	that	library	functions	do	not	form
invalid	pointers

No High

ARR39-C Do	not	add	or	subtract	a	scaled	integer	to	a
pointer

Yes High

CON30-C Clean	up	thread-specific	storage Yes Medium
CON31-C Do	not	destroy	a	mutex	while	it	is	locked Yes Medium
CON32-C Prevent	data	races	when	accessing	bit-

fields	from	multiple	threads
No Medium

SEI	CERT	C
Checks

www.scitools.com Page	1/7



CON33-C Avoid	race	conditions	when	using	library
functions

Yes Medium

CON34-C Declare	objects	shared	between	threads
with	appropriate	storage	durations

No Medium

CON35-C Avoid	deadlock	by	locking	in	a	predefined
order

No Low

CON36-C Wrap	functions	that	can	spuriously	wake	up
in	a	loop

Yes Low

CON37-C Do	not	call	signal()	in	a	multithreaded
program

Yes Low

CON38-C Preserve	thread	safety	and	liveness	when
using	condition	variables

Yes Low

CON39-C Do	not	join	or	detach	a	thread	that	was
previously	joined	or	detached

Yes Low

CON40-C Do	not	refer	to	an	atomic	variable	twice	in
an	expression

Yes Medium

CON41-C Wrap	functions	that	can	fail	spuriously	in	a
loop

Yes Low

CON43-C Do	not	allow	data	races	in	multithreaded
code

No Medium

DCL30-C-ADeclare	objects	with	appropriate	storage
durations	-	assigning	addresses

Yes High

DCL30-C-BDeclare	objects	with	appropriate	storage
durations	-	returning	addresses

Yes High

DCL31-C Declare	identifiers	before	using	them Yes Low
DCL36-C Do	not	declare	an	identifier	with	conflicting

linkage	classifications
Yes Medium

DCL37-C Do	not	declare	or	define	a	reserved
identifier

Yes Low

DCL38-C Use	the	correct	syntax	when	declaring	a
flexible	array	member

Yes Low

DCL39-C Avoid	information	leakage	when	passing	a
structure	across	a	trust	boundary

No Low

DCL40-C Do	not	create	incompatible	declarations	of
the	same	function	or	object	

Yes Low

DCL41-C Do	not	declare	variables	inside	a	switch
statement	before	the	first	case	label

Yes Medium

ENV30-C Do	not	modify	the	object	referenced	by	the
return	value	of	certain	functions

Yes Low

ENV31-C Do	not	rely	on	an	environment	pointer
following	an	operation	that	may	invalidate	it

Yes Low

SEI	CERT	C
Checks

www.scitools.com Page	2/7



ENV32-C All	exit	handlers	must	return	normally Yes Medium
ENV33-C Do	not	call	system() Yes High
ENV34-C Do	not	store	pointers	returned	by	certain

functions
Yes Low

ERR30-C Take	care	when	reading	errno Yes Medium
ERR32-C Do	not	rely	on	indeterminate	values	of	errno No Low
ERR33-C Detect	and	handle	standard	library	errors Yes High
ERR34-C Detect	errors	when	converting	a	string	to	a

number
Yes Medium

EXP30-C-A Do	not	depend	on	the	order	of	evaluation
for	side	effects	-	calls

Yes Medium

EXP30-C-B Do	not	depend	on	the	order	of	evaluation
for	side	effects	-	other

Yes Medium

EXP32-C Do	not	access	a	volatile	object	through	a
nonvolatile	reference

Yes Low

EXP33-C Do	not	read	uninitialized	memory Yes High
EXP34-C Do	not	dereference	null	pointers Yes High
EXP35-C Do	not	modify	objects	with	temporary

lifetime
No Low

EXP36-C Do	not	cast	pointers	into	more	strictly
aligned	pointer	types

Yes Low

EXP37-C Call	functions	with	the	correct	number	and
type	of	arguments

Yes Medium

EXP39-C Do	not	access	a	variable	through	a	pointer
of	an	incompatible	type

Yes Medium

EXP40-C Do	not	modify	constant	objects No Low
EXP42-C Do	not	compare	padding	data Yes Medium
EXP43-C Avoid	undefined	behavior	when	using

restrict-qualified	pointers
No Medium

EXP44-C Do	not	rely	on	side	effects	in	operands	to
sizeof,	_Alignof,	or	_Generic

Yes Low

EXP45-C Do	not	perform	assignments	in	selection
statements

Yes Low

EXP46-C Do	not	use	a	bitwise	operator	with	a
Boolean-like	operand

Yes Low

EXP47-C Do	not	call	va_arg	with	an	argument	of	the
incorrect	type

Yes Medium

FIO30-C Exclude	user	input	from	format	strings Yes High
FIO32-C Do	not	perform	operations	on	devices	that

are	only	appropriate	for	files
No Medium

FIO34-C Distinguish	between	characters	read	from	a No High

SEI	CERT	C
Checks

www.scitools.com Page	3/7



Distinguish	between	characters	read	from	a

file	and	EOF	or	WEOF
FIO37-C Do	not	assume	that	fgets()	or	fgetws()

returns	a	nonempty	string	when	successful
Yes High

FIO38-C Do	not	copy	a	FILE	object Yes Low
FIO39-C Do	not	alternately	input	and	output	from	a

stream	without	an	intervening	flush	or
positioning	call

Yes Low

FIO40-C Reset	strings	on	fgets()	or	fgetws()	failure Yes Low
FIO41-C Do	not	call	getc(),	putc(),	getwc(),	or

putwc()	with	a	stream	argument	that	has
side	effects

Yes Low

FIO42-C Close	files	when	they	are	no	longer	needed Yes Medium
FIO44-C Only	use	values	for	fsetpos()	that	are

returned	from	fgetpos()
Yes Medium

FIO45-C Avoid	TOCTOU	race	conditions	while
accessing	files

Yes High

FIO46-C Do	not	access	a	closed	file Yes Medium
FIO47-C Use	valid	format	strings Yes High
FLP30-C Do	not	use	floating-point	variables	as	loop

counters
Yes Low

FLP32-C Prevent	or	detect	domain	and	range	errors
in	math	functions

No Medium

FLP34-C Ensure	that	floating-point	conversions	are
within	range	of	the	new	type

No Low

FLP36-C Preserve	precision	when	converting	integral
values	to	floating-point	type

No Low

FLP37-C Do	not	use	object	representations	to
compare	floating-point	values

Yes Low

INT30-C Ensure	that	unsigned	integer	operations	do
not	wrap

Yes High

INT31-C Ensure	that	unsigned	integer	operations	do
not	result	in	lost	or	misinterpreted	data

Yes High

INT32-C Ensure	that	operations	on	signed	integers
do	not	result	in	overflow

No High

INT33-C Division	by	Zero Yes Low
INT34-C Do	not	shift	an	expression	by	a	negative

number	of	bits	or	by	greater	than	or	equal
to	the	number	of	bits	that	exist	in	the
operand

No Low

INT35-C Use	correct	integer	precisions No Low
INT36-C Converting	a	pointer	to	integer	or	integer	to Yes Low

SEI	CERT	C
Checks

www.scitools.com Page	4/7



Converting	a	pointer	to	integer	or	integer	to

pointer
MEM30-C Do	not	access	freed	memory No High
MEM31-C Free	dynamically	allocated	memory	when	no

longer	needed
Yes Medium

MEM33-C Allocate	and	copy	structures	containing	a
flexible	array	member	dynamically

Yes Low

MEM34-C Only	free	memory	allocated	dynamically Yes High
MEM35-C Allocate	sufficient	memory	for	an	object Yes High
MEM36-C Do	not	modify	the	alignment	of	objects	by

calling	realloc()
No Low

MSC30-C Do	not	use	the	rand()	function	for
generating	pseudorandom	numbers

Yes Medium

MSC32-C Properly	seed	pseudorandom	number
generators

Yes Medium

MSC33-C Do	not	pass	invalid	data	to	the	asctime()
function

Yes High

MSC37-C Ensure	that	control	never	reaches	the	end
of	a	non-void	function

Yes High

MSC38-C Do	not	treat	a	predefined	identifier	as	an
object	if	it	might	only	be	implemented	as	a
macro

Yes Low

MSC39-C Do	not	call	va_arg()	on	a	va_list	that	has	an
indeterminate	value

Yes Low

MSC40-C Do	not	violate	constraints Yes Low
MSC41-C Never	hard	code	sensitive	information No High
POS30-C Use	the	readlink()	function	properly Yes High
POS34-C Do	not	call	putenv()	with	a	pointer	to	an

automatic	variable	as	the	argument
Yes High

POS35-C Avoid	race	conditions	while	checking	for	the
existence	of	a	symbolic	link

Yes High

POS36-C Observe	correct	revocation	order	while
relinquishing	privileges

Yes High

POS37-C Ensure	that	privilege	relinquishment	is
successful

Yes High

POS38-C Beware	of	race	conditions	when	using	fork
and	file	descriptors

Yes Medium

POS39-C Use	the	correct	byte	ordering	when
transferring	data	between	systems

Yes Medium

POS44-C Do	not	use	signals	to	terminate	threads Yes Low
POS47-C Do	not	use	threads	that	can	be	canceled

asynchronously
Yes Medium

SEI	CERT	C
Checks

www.scitools.com Page	5/7



POS48-C Do	not	unlock	or	destroy	another	POSIX
thread's	mutex

Yes Medium

POS49-C When	data	must	be	accessed	by	multiple
threads,	provide	a	mutex	and	guarantee	no
adjacent	data	is	also	accessed

No Medium

POS50-C Declare	objects	shared	between	POSIX
threads	with	appropriate	storage	durations

Yes Medium

POS51-C Avoid	deadlock	with	POSIX	threads	by
locking	in	predefined	order

Yes Low

POS52-C Do	not	perform	operations	that	can	block
while	holding	a	POSIX	lock

Yes Low

POS53-C Do	not	use	more	than	one	mutex	for
concurrent	waiting	operations	on	a
condition	variable

Yes Medium

POS54-C Detect	and	handle	POSIX	library	errors Yes High
PRE30-C Do	not	create	a	universal	character	name

through	concatenation
Yes Low

PRE31-C Avoid	side	effects	in	arguments	to	unsafe
macros

Yes Low

PRE32-C Do	not	use	preprocessor	directives	in
invocations	of	function-like	macros

Yes Low

SIG30-C Call	only	asynchronous-safe	functions
within	signal	handlers

Yes High

SIG31-C Do	not	access	shared	objects	in	signal
handlers

Yes High

SIG34-C Do	not	call	signal()	from	within	interruptible
signal	handlers

Yes Low

SIG35-C Do	not	return	from	a	computational
exception	signal	handler

No Low

STR30-C Do	not	attempt	to	modify	string	literals Yes Low
STR31-C Guarantee	that	storage	for	strings	has

sufficient	space	for	character	data	and	the
null	terminator

Yes High

STR32-C Null-terminated	strings	passed	to	library
functions

Yes High

STR34-C Cast	characters	to	unsigned	char	before
converting	to	larger	integer	sizes

No Medium

STR37-C Arguments	to	character-handling	functions
must	be	representable	as	an	unsigned	char

Yes Low

STR38-C Do	not	confuse	narrow	and	wide	character
strings	and	functions

Yes High

SEI	CERT	C
Checks

www.scitools.com Page	6/7



WIN30-C Properly	pair	allocation	and	deallocation
functions

Yes Low

SEI	CERT	C
Checks

www.scitools.com Page	7/7


